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ABSTRACT

In the current paper, we proposed a method to estimate value-at-risk (VaR) for the model with
GARCH effect when the distribution of independent innovations of the residuals of the GARCH
model has a mixture of generalized hyperbolic secant distribution (GHSD), with two tailed ge-
neralized Pareto distributions (GPD), and estimating the parameters of the GHSD and the GPD
distributions by the Bayesian inference approch.
This approach has two steps : The first step is the estimation of the variability (volatility) followed
by the GARCH model using the maximum likelihood method. The second step is used to take
into account the uncertainties in the parameters, including the a priori information to estimate
the parameters of the hyperbolic secant distribution (GHSD) and (GPD) distributions to obtain
the a posteriori distribution of the parameters. We apply the mixture model to the innovations
obtained from the residuals to derive the value-at-risk (VaR) estimates.

Key words : Generalized Pareto distribution (GPD), Generalized Hyperbolic secant distri-
bution (GHSD) , GARCH model, Bayesian inference, Value-at-Risk.

1. INTRODUCTION

The purpose of this paper is to quantify risk. Value-at-Risk (VaR) is one such measure of risk,
which quantifies the largest possible profit of a portfolio over a fixed time period for a given small
probability. To estimate VaR using one of the statistical models, many assumptions are necessary.
One of these is that daily returns are identical, independent and normally distributed. However,
in the real world, financial data are not normally distributed and contain skewness or kurtosis
properties. Therefore, modeling VaR with the assumption of normality, without accounting for
large and unexpected losses that occur in the tail of the distribution, results in underestimated
or overestimated VaR forecasts. Due to the inability of the normal distribution to model the tail
of financial return series, many researchers have used skewed and heavy-tailed distributions to
forecast VaR to overcome this problem. Many models have been proposed to capture the cluste-
ring effect of volatility, the most widely used being the Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) model.

Extreme value models have been widely used in financial applications such as risk analysis,
forecasting and pricing models. Extreme value models describe the stochastic dynamics of a
process for states that have a small probability of realizing and generally outside the range of
observed data (Beirlant et al. 2004).
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This paper develops a new model based on extreme value theory (EVT) to estimate VaR,
using the extreme quantiles of the return series after taking into account the dependence struc-
ture induced by the volatility clustering modeled by the GARCH model. A two-step approach
commonly used in the financial literature (due to McNeil and Frey 2000). In particular, a mixture
of three distributions noted (GHG) are used to capture the full distribution of innovations. The
generalized secant distribution (GHSD) (unimodal and symmetric) is used to describe the main
mode of the innovation distribution and generalized Pareto (GPD) is used to simultaneously
extrapolate the gains (on the right) and losses (on the left) beyond certain thresholds, which
represent the upper and lower tails of the innovation distribution. We will use this two-step me-
thodology as the basis for the approach taken in this paper.

Bayesian inference is used for fitting the mixture model as it can take advantage of any
expert prior information, which can be important in tail estimation due to the inherent sparsity
of extreme data. The estimation method for the proposed mixture model is firstly evaluated,
followed by application of the two stage GARCH-GHSD-GPD mixture model to forecasting
VaR.

The rest of the paper is organized as follows.
Section 2, restricted to the one sided tailed GPD distribution. In the section 3, we presente the
mixture GPD-GHSD-GPD model for the independent residuals. In Section 4, we give the VaR
extreme in presence of the GARCH effect. Section 5 is devoted to estimate the parameters of the
GPD-GHSD-GPD model using the bayesian inference.

2. ONE SIDED GPD DISTRIBUTION

The generalized Pareto distribution (GPD) is a model with asymptotic justification when
applied to excesses which occur over a sufficiently high threshold. The GPD can equivalently be
defined for excesses below a suitably low threshold for capturing the lower tail of a distribution.
Let X be an i.i.d random variable with X ≥ u following a G(x | ξ ,β ,u) with scale parameter β

(dependent on threshold u) β and shape parameter ξ , which has a distribution function given by :

G(x | ξ ,β ,u) = P(X < x | X > u) =

1−
[
1+ξ

(
x−u

β

)]−1/ξ

+
ξ 6= 0

1− exp
[
−
(

x−u
β

)]
ξ = 0

where x ≥ u,β > 0 and y+ = max(y,0). There are three types of tail behaviour detertmined by
the shape parameter : ξ = 0 gives an exponential tail, ξ < 0 gives a short tail with an upper
bound given by u−β/ξ and a heavier tail than an exponential is indicated if ξ > 0. The task is
to find the lowest threshold such that the GPD fits the sample of exceedances over this threshold
adequately.
The problem of choosing the threshold u is still of high theoretical and practical interest. It is
desirable to have an intuitive automated threshold selection procedure to use with POT analysis.
The simple method is an a priori, or fixed threshold selection based on expertise on the subject
matter at hand. Various rules have been suggested, for example, selecting the top 10% of the
data, see e.g., DuMouchel (1983), or the top 5%, see, Kelly and Jiang (2014), or the top square
root of the sample size see, e.g., Bader et al. (2018), and Silva Lomba et al. (2020).
Drees et al. (2000) suggested the Hill plot, which plots the Hill estimator of the shape parameter
based on the top k order statistics against the threshold u.
Many variants of the Hill plot have been proposed (Scarrott and MacDonald (2012).

3. THE GENERAL HYPERBOLIC SECANT DISTRIBUTION

Palmitesta and Provasi (2004) showed that the generalized secant hyperbolic distribution
(GSHD) can be an alternative to the Student-t distribution in the interpretation of financial data
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with heavy tails. During the last few years, several generalizations of the hyperbolic secant dis-
tribution have become popular in the context of financial return data because of its excellent
fit.

The standard hyperbolic secant distribution (HSD) has its origin in Fisher (2010). Additio-
nal properties are developed by Talacko (???? Année). It is symmetric and bell-shaped like the
Gaussian distribution but has slightly heavier tails. However, in contrast, both probability den-
sity function, cumulative density function and quantile function, admit simple and closed-form
expressions, which makes it appealing from a practical and a theoretical point of view. In parti-
cular, HSD can be used as starting distribution to obtain generalized distribution systems which
exhibit skewness and heavier (or lighter) tails.
. The distribution function H of the standard hyperbolic secant distribution is given by

H(z) =
2
π

arctan
[
exp
(

π

2
z
)]

, z ∈ R

The quantile function H−1 of the standard hyperbolic secant distribution is given by

H−1(p) =
2
π

ln
[
tan
(

π

2
p
)]

, p ∈ (0,1)

The standard hyperbolic secant distribution is generalized by adding location and scale pa-
rameters. Suppose that Z has the standard hyperbolic secant distribution and that µ ∈ R and
σ ∈ (0,∞). Then X = µ +σZ has the hyperbolic secant distribution with location parameter µ

and scale parameter σ parameter.
The distribution function H of X is given by

H(x) =
2
π

arctan
{

exp
[

π

2

(
x−µ

σ

)]}
, x ∈ R

The density function is given by :

h(x) =
1

2σ

1
coshπ( x−µ

2σ
)

And the quantile function H−1 of X is given by

H−1(p) = µ +σ
2
π

ln
[
tan
(

π

2
p
)]

, p ∈ (0,1)

Suppose that µ ∈R and σ ∈ (0,∞). If X has the hyperbolic secant distribution with location
parameter µ and scale parameter σ then

U = H(X) =
2
π

arctan
{

exp
[

π

2

(
X−µ

σ

)]}
has the standard uniform distribution. If U has the standard uniform distribution then

X = H−1(U) = µ +σ
2
π

ln
[
tan
(

π

2
U
)]

has the hyperbolic secant distribution with location parameter µ and scale parameter σ .
The skewness and kurtosis of X are skew(X) = 0 and kurt(X) = 5.
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4. TWO TAIL GPD-GHSD-GPD MIXTURE MODEL

The two tail GPD mixture model has separate GPD’s for the upper and lower tails beyond
each threshold, with a suitable distribution between the two thresholds. The thresholds are ex-
plicitly specified by model parameters to be estimated. We will denote the two tail distribution
GPD innovation with the mixture distributiion of the GHSD and GPD. The distribution function
of the mixture model, P(X ≤ x) = F(x) where :

F(x | θ) ={H (ul | θ1) [1−G(−x | ξl ,βl ,−ul)]} I(−∞,ul
(x)

+H(x | θ1)I(u,ur)(x)+

{H (ur | θ1)+ [1−H (ur | µ,σ)]G(x | ξr,βr,ur)} I[ur ,∞)

and H(x) is the GHSD cumulative distribution function with location parameter µ and the
scale parameter σ and G(x | ξ ,β ,u) is the distribution function of GPD defined by equation
1. The subscript on the GPD parameters l denotes the lower (left) tail and r denotes the upper
(right) tail. The parameter vector of the model is θ = (µ,σ ,ur,ξr,βr,ul ,ξl ,βl), θ1 = (µ,σ),
θ3 = (ξr,βr,ξl ,βl) and θ2 = (ur,ul)

For a sample of size n,x=(x1, . . . ,xn) from F , parameter vector θ =(µ,σ ,ur,ξr,βr,ul ,ξl ,βl),
A = {i : xi < ul}, B = {i : ul ≤ xi ≤ ur}, and C = {i : xi > ur}, the likelihood function is

L(θ |x) = ∏
A

h(x | θ1)∏
B
(1−H(ul | θ1))

(
1
βl

[
1+

ξl (xi−u)
βl

]−(1+ξl)/ξl

+

)

∏
C
(1−H(u|θ1))

(
1
βr

[
1+

ξr (xi−u)
βr

]−(1+ξr)/ξr

+

)

for ξ 6= 0,
and

L(θ | x)=∏A h(x | θ1)∏B(1−H(ul | θ1))((1/βl)exp{(xi−ul)/βl})

∏
C
(1−H(ur | θ1))((1/βr)exp{(xi−ur)/βr})

, for ξ = 0.
Wehere θ1 = (µ,σ).

The GHG model is also able to extrapolate two sided tail distributions simultaneously, which
is highly relevant in many finance/economics applications. The proposed mixture model has the
flexibility in dealing with a variety of distributions, with or without the symmetry, by allowing
both tails to follow separate GPD distributions.

5. GARCH MODEL

Let {Rt} = lnXt − lnXt−1 be a strictly stationary daily log return series on a financial asset
at time t.

GARCH(1,1), which is the most commonly used process of all GARCH models. It is spe-
cified as follows :

Rt = µt + εt

σ
2
t = ω +α1ε

2
t−1 +β1σ

2
t−1

where ω > 0,α1 > 0,β1 > 0, and α1 +β1 < 1 to ensure stationarity, and εt = σtzt is a random
variable denoting the mean corrected return/random shock. zt is a sequence of i.i.d. r.v. with
parameter θ and µt is the expected return at time t and σt is the volatility estimator from a
GARCH model. The distribution of εt | It−1 is conditional on all information available up to time
t−1. The dynamic behavior of the conditional variance is accounted by εt . This implies that σ2

t ,
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the conditional variance of today, is dependent on past squared disturbances, ε2
t Therefore, the

distribution function of the observation zt can be written as :

zt ∼ F (x, |θ)

F (x|θ) = {H (ul | µ,σ) [1−G(−x | ξl ,βl ,−ul)]} I(−∞,ul
(x)

+H(x | µ,σ)I(u,ur)(x)+

{H (ur | µ,σ)+ [1−H (ur | µ,σ)]G(x | ξr,βr,ur)} I[ur ,∞)

6. TWO STAGE APPROACH

Suppose the log-returns, Rt = lnXt − lnXt−1, follow the model

εt = σtzt

Let VaRα
t denote the corresponding value at risk. Suppose zt are independent and identical

with the mixture distribution GHG. The relationship between the VaR and the standard deviation
at time t can be expressed as follows :

VaRα
t = µt +qF σt

where qF = F−1(α) is the α-quantile of the mixture distribution GHG.
The two stage approach to estimate the VaR is as follows :

1. Fit a GARCH volatility model to {Rt} and obtain the standardized innovation term zt as
Rt = µt +σtzt .
Here, the µt is the expected return at time t and σt is the volatility estimator from a GARCH
model. The form of GARCH can be selected according to the particular application.
2. Fit the proposed GHG mixture model to {zt} (the standardized innovation sequence) as des-
cribed above. The upper tail of the mixture model represent gains and the lower tail represents
the losses.

The first-stage GARCH model is fitted using a standard maximum likelihood method, as this
stage is less critical for VaR estimation. However, the GHG mixture model is estimated using
Bayesian inference because the complexity of the likelihood for this model means that it would
be difficult to maximize it directly, and Bayesian inference also allows for the use of prior infor-
mation that can greatly facilitate the estimation of tail quantities (such as VaR).

7. BAYESIAN INFERENCE FOR MIXTURE MODEL

Bayesian inference is used to estimate the mixture model parameters to combine the a
priori information from the experts potentially with the sample data. Markov chain Monte Carlo
(MCMC) method was used to obtain the a posteriori distribution. In this section, we principally
apply Bayesian inference. In the absence of expert knowledge, it is convenient to make use of so
called objective priors, such as the Jeffreys prior (Jeffreys, 1961) and the maximal data informa-
tion (MDI) prior (first mentioned in Zellner, 1971, and given explicitly in Zellner, 1996).

7.1. Prior Distribution

The parameter vector θ = (µ,σ ,ur,ξr,βr,ul ,ξl ,βl) can be decomposed into three compo-
nents θ1 = (µ,σ), θ2 = (ξl ,βl) θ3 = (ξr,βr) and θ4 = (ur,ul), associated with the GHSD, GPD
parameters, and the thresholds respectively. In this study we explicitly specify priors with little
information. In specific applications, however, expert information could be included to give more
informative priors which could reduce the uncertainty associated with parameter estimates.
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7.2. Prior for the GHSD parameters

If the chosen distribution H(x | θ1) is gamma ( due to Behrens et al (2004)). Moreover, it is lo-
gical to assume the prior independence between the shape parameter and the location parameter.
We then define µ ∼ Ga(a,b) and σ ∼ Ga(c,d), where a,b,c and d are known hyperparameters.
The joint precedence of θ1 = (µ,σ) is then the following

π(θ1) =
ba

Γ(a)
µ

a−1e−bµ dc

Γ(c)

(
µ

σ

)c−1
e−dµ/σ

(
µ

σ2

)
7.3. Prior for the GPD parameters

The idea we use here is from Coles and Tawn (1996) refers to the elicitation of information
within a parameterization on which experts are familiar. More precisely, by the inversion of
Equation (1.1), we obtain the 1− p quantile of the distribution,

q = u+
β

ξ

(
p−ξ −1

)
The formulation of the prior elicited on the quantile differences also permits consideration of the
known negative dependence between the shape ξ and scale β parameters of the GPD. A gamma
prior distribution is used to describe the quantile differences. We assume the quantile differences
follow a gamma distribution, so that : d1 = q1 ∼ Ga(a1,b1) and d2 = q2 − q1 ∼ Ga(a2,b2)
The marginal prior distribution for β and ξ for the excesses above (or below if lower tail) the
threshold, the prior for upper tail is defined as

π(β ,ξ ) ∝exp
{
−b1

[
u+

β

ξ

(
p−ξ

1 −1
)]}[

u+
β

ξ

(
p−ξ

1 −1
)]a1−1

× exp
{
−b2

[
β

ξ

(
p−ξ

2 − p−ξ

1

)]}[
β

ξ

(
p−ξ

2 − p−ξ

1

)]a2−1

×
∣∣∣∣ β

ξ 2

[
(p1 p2)

−ξ (log p1− log p2)+ p−ξ

2 log p2− p−ξ

1 log p1

]∣∣∣∣
The prior for the lower tail GPD parameters is similarly defined. In this paper we have used the
quantile differences for the conditional tail probabilities ( p1 = 0.1 and p2 = 0.01) following
Coles and Tawn (1996). The tail probabilities considered for p1 and p2 can be altered according
to the application and the available expert information.

7.4. Prior for the thresholds

There are many ways to set up a prior distribution for u. We can assume that u follows a
truncated normal distribution with parameters

(
µu,σ

2
u
)
, which are truncated at the minimum

and maximum of the sample data respectively (and thresholds), due to Behrens et al. (2004) :

π

(
u | µu,σ

2
u

)
∝ exp

[
−1

2

(
u−µu

σ2
u

)2
]

for the lower threshold u = ul and upper threshold u = ur.
A continuous uniform prior is another alternative. A discrete distribution can also be assu-

med.
for the lower threshold u= ul and upper threshold u= ur. The priors for the GHSD and GPD

components are assumed independent giving the logarithm of the posterior distribution
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L(θ | x) ∝ π(θ)L(x | θ) for ξ 6= 0 :

L(θ | x) = π(θ1)π(θ2)π(θ3)π(θ4)L(x | θ)

=
ba

Γ(a)
µ

a−1e−bµ dc

Γ(c)

(
µ

σ

)c−1
e−dµ/σ

(
µ

σ2

)
×
{
−bl

1

[
u+

βl

ξ

(
p−ξl

1 −1
)]}[

u+
βl

ξ

(
p−ξl

1 −1
)]a1−1

× exp
{
−bl

2

[
βl

ξl

(
p−ξl

2 − p−ξl
1

)]}[
βl

ξl

(
p−ξl

2 − p−ξl
1

)]al
2−1

×

∣∣∣∣∣ β

ξ 2
l

[(
pl

1 pl
2

)−ξ (
log pl

1− log pl
2

)
+ p−ξl

2 log pl
2− p−ξl

1 log pl
1

]∣∣∣∣∣
×
{
−br

1

[
u+

βr

ξr

(
p−ξr

1 −1
)]}[

ur +
βr

ξr

(
p−ξr

1 −1
)]ar

1−1

× exp
{
−br

2

[
βr

ξr

(
p−ξr

2 − p−ξr
1

)]}[
βr

ξr

(
p−ξr

2 − p−ξr
1

)]ar
2−1

×
∣∣∣∣ βr

ξ 2
r

[
(pr

1 pr
2)
−ξr (log pr

1− log pr
2)+ p−ξr

2 log pr
2− p−ξr

1 log pr
1

]∣∣∣∣
exp

[
−1

2

(
u−µu

σ2
u

)2
]
×L(θ | x)

In the case ξ = 0, the a posteriori distribution is deduced by replacing ξ by 0 on the left and/or
on the right.

The computation is done through the MCMC methods, via Metropolis-Hastings (M-H) al-
gorithm. In the algorithm implementation, each subset of parameters is updated at each iteration
step in terms of the importance order of the parameters as (ξr,βr,ur) ,(ξl ,βl ,ul) and finally
(µ,σ).

8. CONCLUSIONS

In this paper, we have tried to present the Bayesian approach to estimate the value-at-risk in
the case of a dynamic model with GARCH effect by assuming that the error of the residuals is
of mixed distribution whose central law is followed by the GHSD distribution and the two tails
are followed by the GPD distribution.
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