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ABSTRACT

In this manuscript, we deal with a study of the existence and the multiplicity of p;-concave
positive solutions for a boundary value of two-sided fractional differential equations involving
generalized-Caputo fractional derivatives. An application of a functional analysis tools, more
specifically, we using some fixed point theorems and under some additional assumptions, some
of important results have been proven and we obtain the existence of at least one solution.
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1. INTRODUCTION

Lately, many researches on fractional differential problems have been dealt with by many
researchers. Especial, fractional p-Laplacian has been used in modeling different problems, for
exampale in science, engineering, biology, 6} 18,19} 10, 11} [19] etc.

In this words, we consider the following fractional boundary value problem (FBVP) :

PCG (9, (PG 1)) (1) +cf(ult)) =0, a<i<T,
u(a) +p“C@;iu(a) =0, Sglu(a) =0, 5;lu(T) = ,u(Slllu(n) +A, (1)

PG U(T) = -3}, [0 (" CT%0)] (0) = 8, [0 ()] (T) =0

where
— PiCg9 PrCYY gare the left and right-sided Caputo-Katugampola fractional derivatives
with pj,pp e R—{l}and2 < o, < 3,

k
d
— ¢ is the p-Laplacian operator, i.e., §(s) = |s|P~2s,p > 1, 81)‘ = (tlfp E) ,

— f is continuous and positive.

— ne€(aT),0<u<l,c>0and A >0.

In [15], Chuanzhi Bai used the Guo-Krasnoselskii fixed point theorem and the Banach
contraction mapping principle to prove the existence and uniqueness of positive solutions for
the FBVP :

8 )

{ (0p (D& u)) (1) + f(t,u(t) =0,  0<r<1,
u(0) = D& u(0) =0, DB u(0)=<Df.u(1) =0,
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where 0 < B < 1,2 <a <2+,Df, and CDﬁ are the Riemann-Liouville and Caputo fractional
derivatives of orders o, 3, respectlvely, p> 1 and f : [a,b] x R — R is a continuous function.

Chai [1]], obtained some results for the existence of at least one nonnegative solution and two
positive solutions by using a fixed point theorem on a cone for the nonlinear FBVP

{D€+(¢p(08‘+u))(t)+f(t,u(t))—0, 0<r<l, @
u(0) =0,u(1)+ oD} u(1) =0, DF, u(0)=0,

where | < <2,0<fB,y<1,0<a—7y—1,and 6 > 0.
Using the fixed point index theory, Su et al. [13]] studied the existence of positive solution
for a nonlinear four-point singular FBVP

{ (6p W) (1) +a()f(u() =0, 0<r<1, / @
g (u(0)) =By (W' (£)) =0, vdp(u(1))+ 89, (u'(n)) =0,
where a,y>0,8,6 >0,£,n € (0,1),and £ < 7.

Su [12] applied the fixed-point index theory to study the existence of positive solutions for
the nonlinear third-order two-Point singular boundary value problem

{ (0 (1)) @) +al) fut)) =0, 0<r<1, )
u(0) =i/ (0) = - =ul" ) (0) =u""D(0) =0, u(1) =Y} au(m),

where 0 <My <My < -+ < Mo < 1,0 >0 with " 2y ~2 < 1.

Using the coincidence degree theory, Tang et al. [14] gave a new result on the existence of
positive solutions to the FBVP

{ “D§. (9° 0+u> (1) = £ (1.u(0),Df u(t) )
w(0)=0, Db u(0)=°Db u(1),
where 0 < o, < 1,1 <o+ <2.

Torres [16], studied the existence and multiplicity for a mixed-order three-point boundary

value problem of fractional differential equation evolving Caputo’s differential operator and the
boundary conditions with integer order derivatives

{ (¢p (DEu))’ (1) +aln)f(ru() =0. 0<t<1, N
“Df.u(0) = u(0) = u"(0) = 0, u/(1) = (n),
where 1,7 € (0,1),a € (2,3].

Base on the coincidence degree theory, Chen et al. [2] gave new results about the problem

{LD‘* - 0p (DY) (1) = f (1.2(0),*DEEx(1)) 1 € [0,1], ®
‘D, x(0) = °Df, x(1) = 0,

(6

where 0 < a,B<1,1<a+f <2.

It can be seen that our work presented in this words has some following features which are
different from those [2} [16} [14} [12} [13| [1} [15], in addition to this, the appropriate manipulations
of the controls py, P2, @, 0, ¢, A, it and 7, allow us to see the impact and the extent of our study.
Add to this there is no known research paper that delves deeper than us into extracting some
of the properties of the Greens functions which used to study the existence of solutions, special
when the non-integer order of the fractional derivatives is huge.

In this words, we obtain some sufficient conditions ensuring the existence of at least one po-
sitive solutions for the BVP (). The rest of the paper is organized as follows. Section 2 presents
some basic definitions, lemmas, and preliminary results. In Section 3, we present some important
lemmas. In Section 4, we derive some conditions on the parameter A to obtain the existence of
at least one positive solution. Finally, we give some illustrative examples in Section 5.

ICMA2021-2



Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

2. PRELIMINARIES AND BACKGROUND MATERIALS

Notations

In addition to the notations introduced with the problem (I)), let J = [a,T] C (0,), and
p>0.

1. C(J) denotes the Banach space of continuous functions / on J endowed with the norm

[[2llc = max|A(x)|.
xeJ

2. AC(J) and C"*(J) denote the spaces of absolutely continuous and n times continuously
differentiable functions on J respectively.

3. LP(a,T) denotes the space of Lebesgue integrable functions on (a,T).
4. G (J) is the Banach space of n continuously differentiable functions on J, with respect to
Op :
. sk
Ch) = {h €C(): 8khec().k=0,1, n}

endowed with the norm )

k
[1Allcy :kZOHaph”C-

5. [a] is the largest integer less than or equal to a.. Throughout the words, we use n = [¢t] + 1.
6. CT(J)={yeCW), y(t) >0 VteJ}.
2.1. Fractional calculus

We present here basic definitions and lemmas from fractional calculus theory (See [6l I8} 9
10411} 15] and references therein).

Definition 1 (Function space) For ¢ € R, consider the Banach space

1
ro. dr\>r
%P(a,T)z{h:J%R: ] gor = </ | €€ h(r) |P 7)' <+oo}.
a

Now, we recall the Katugampola (K) and Caputo-Katugampola (CK) fractional integrals and
derivatives [5].

Definition 2 For a function u € 2 (a,T), the Katugampola left-sided (P 7% ) and right-sided
(P I fractional integrals of order o > 0 are defined by

pl—oc ot
P7%ut) = T(a) / (¢P —sp)aflspflu(s)ds, t>a,
a

P ga plia T P pya—1 p—1
ﬂT,u(t):r(a)/f (P —tP)* 1PNy (s)ds, 1 <T.

Remark 1 For afunctionu € 2 (a,T), the Katugampola left-sided (P .7 a‘?ﬁ ) fractional integrals
of order o0 > 0 can be geven by the generalized convolution of u and h

PARult) = () () = [ Wo)ul™ (6l0) +8(0)~¢(6)) ¢ (s, 1>

where h(t) = ﬁ(g(t) —g(a)* ' and g(t) = % For more detailes see [20]. This generalized

convolution of two functions is commutative.
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Next, we present some properties for left-sided integrals. But, the same properties are also
true for the right-sided ones.

Lemmal Letc € R, a,B,p >0, and 1 < p < oo. Then, for all u € %‘”(a,T), we have the
following.

— P 28 (a,T) — 2F(a,T).

— P7Y% is linear.

— Pt gb o gth

Definition 3 For a function u € C§([a, T]) (or € AC5([a,T])), the Caputo-Katugampola fractio-
nal derivatives are defined by :

PECOE u(t) =P 71" 8h u(t).
PECOE u(t) = (—1)"PLap= %85 u(t).

Lemma2 Let > o >0, he .#F(a,T), u€ ACY([a,T]) or C§([a,T]). Then we have

PCaP 7P n(t) =P.75 n(r), ©)
c ol (1P —aP\F
P e (P> 7% u) ) =ut)- Y G < (10)
k=0 p
n—1 k
. TP —¢P
Pt (PCau) (1) =ult)~ Y Dy ( d ) , (11
k=0 p
for some real constants Cy and Dy,.
Lemma 3 IfPC9%u € C(J), thenu € Cs*I ().
Lemmad [fuc C'(J), then
1 /P —qP\ %! sP—1 1
8 (PIu) () = ¢ / ( ) il (1P +aP —sP)?)ds € C(J)
(@) Ja p (tP +aP —sP)»

2.2. Fixed point theorems

Let E be a real Banach function space, endowed with the infinity norm.

Definition 4 A nonempty closed convex set K C E is called cone if the following properties are
satisfied.

1. Vue K,vA>0: Auek.
2. VueK:—uekK — u=0.

Definition 5 A continuous operator is called completely continuous if it maps bounded sets into
precompact sets.

Let K CEbeacone, r >0, 2, ={ucK:|u|| <r}, andiis the fixed point index function.
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Theorem 5 ( [4],[3]) Let ¥ : KNP, — K be a completely continuous operator such that L u #
uforallu € 0.2,.

1. If | Lu| < ||ul| for all u € 0 Py, theni(L,Qr,K) = 1.
2. If | ZLul|l = ||u|| for all u € 0 Py, theni(ZL,Q,K) = 0.

Theorem 6 (Guo-Krasnoselskii [6]) Assume that 22| and &5 are open subsets of E with 0 €
P and P\ C Py. Let L : KN (P, \ D)) — K be completely continuous operator. Consider
(DY) | Lu|| < ||ul|,Vu € KNOP, and || Lu|| > ||ul|,Vu € KNP,
(D2) | Lu|| < |lu|,Yu e KNP, and || Lu| > ||u||,Yu e KNd L.

If (Dy) or (D2) holds, then £ has a fixed point in KN (2, \ ).

3. MAJOR RESULTS
We present some important lemmas which play a key role to prove the major results.

3.1. Lemmas

Consider the linear generalized boundary-value problem associated to (I)

{ PECQEu(t)+y(1) =0, a<t<T, 12

u(a) +P D% u(a) = 0,82 u(a) = 0,8} u(T) — u8} u(n) = A.

Lemma 7 Fory € C(J), the integral solution of (12) is given by

)= [ Gl (220 u [T Hm e (S ).

(I-u
where
1 g\ (TP—spi \ET2 54 L (- O o
_ F(a—l)( e >( pf) P _W<TS> 17, assstsT,
G(l‘,S)— 1 PPt TP —gP1 02 p1—1 <t<s<T
F(a—l)( P )( pi ) o astEsss
(13)
and
. e \%2 1 nP—spt \ 2 5
H(n,s)= m( P1S> S ‘m( P o asssnst,
) - o-2
F(alil) <TD|‘;SP| > spl—l7 a<n<s<T.
14)

Proof. By applying (T0) and from the boundary conditions of (T2)) we get the desired result. The
converse follows by direct computation. The proof is completed.
]

Now, consider the generalized boundary-value problem associated to ()

PECPE (9, (P2 u(1))) =g(t), a<t<T,
u(a) +P€ 7% u(a) = 0,85 u(a) =0, 8 u(T) —udy u(n) = A, (15)
P2 u(T) =0,-8), [0, (D% u)] (a) = 0,83, [0y (PC2%u)] (T) =0.
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Lemma 8 Let g(t) € CT(J) and y(t) = ¢5 <faT K(t, T)g(‘r)d‘c), the problem (13) is equivalent
to the problem (I2) where

- -1
1 TP2—tP2 2 —a2 \© o1 1 w2 \C oo
K(t,s) = CED) ( p2 ) ( p2 ) § “To U, s , t<s,
7 1 (Tf’z ﬂ’2> (v"Z a”2> Zspg—l’ s<t, )

I'(oc-1)
(16)

Proof. From Lemma 2] the equation (T3) is equivalent to the equation

2
. P 4P P2 P
oy (PrCTEu(t) = —Do=Dy (P ) =Da (P ) PP (1),

for some constants Do, D1, D, € R. Using the second boundary condition, we get

) TP2 _ 4P2 1 T fgP2 _gP2\® 2
o, (Peagu) oz a) - (T ke [ (T ) e st

= —/aT K(t,7)q(t)dt
PECY% ——¢,,(/Ktr ),

where 5 = 527 Thus, the problem (T5) can be written as

Consequently,

{ PECHY (1) + 9 (fTK(t 1)q(t )dr) =0, te(aT), 1)

u(a) +PCG% ua) = 0,85 u(a) =0, & u(T) = udy u(n)+A4,

which, according to Lemmal[7} has a unique solution of the form (I8). m

Lemma 9 For g(t) € C*(J), the BVP (I3) has a unique solution

u(t) :/aT G(t,s)0; (/T K(s, ’c)g(r)df) ds+ (%) u(/aTH(ms)rp,s (/T K(m)g(f)df) ds

<;Pl —_gh > " ( K( (0 ) )
+ | — + / a ‘L' T

p1—Hp1 P

where G(t,s), H(t,s) and K(t,s) are defined in the previous Lemmas|[7]

Lemma 10 The functions G, H and K (Equ. (13), (T4), and (18)) satisfy the following.
(i) G(t,s), H(t,s) and K(t,s) are continuous on [a,T] x [a,T].
(ii) V(t,s) € [a,T] x [a,T] :

TP —
H(n,s) < (

TP —aP \ @ ! TP1 boyr P —aPr\ (TP —aPt\ %! 1
Gl /Gt, d :( )( ) _ (
(t5) < ( ) R S VAN NCEE)
=2 rp -1 pi_ o1\ &1 P _ P
> T‘ /H,”ds_; (T7a> ,(u
I'(a) P1 P1

tPr _ P )a
P1 '

")

K(t,s) < (sz_apz)cl re! /qu,- _ TP =P (TPZ—QPZ>GII<TP2—SP2)‘71
’ ~ pI(o) P2 o P2 '
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(iii) Y(t,s) € [a,T]>:  G(t,s) >0,H(t,s) >0,K(t,s) > 0;
(iv) The functiont — G(t,s) is increasing and t — K (t,s) is decreasing Vs € [a,T]. In addition,
we have

tP1 _ gP
TP — gP1

TP2 _ P2

o—1
Tszapz) K(a,s) <K(t,s);

V(t.5) € (a,T)2: ( )a_lG(T,s)gG(t,s) and (

) Vi) € @) fo b (1= (5)"' P ] 6(1.5) <Gy(1,9) < &4 By G(T.) and

=N q—2 TP1 —aP1
P2-1p,
| K (t,5) |< 7ot K(a.s).

Proof. Using the definitions of G, H and K, (i) and (ii) are obtained straightforwardly.
— Property (iii). We only consider the case s < 7 as the other case is straightforward.
When s <t, we have

p1 _ ¢P1 p1 _ P\ &2 p1 _ o1\ &1
Glt.s) > 1 (l s ) (l s ) Pl 1 (l s ) ey
Fla—1) p1 p1 I'(a) p1

P — 5P\ ! 1 1
> AP - -
- < pi ) {F(a— 1) F(a)] ’

>0, (because INo—1)<I'(a) for2< a < 3).

Similarly, we can easily prove that H(t,s) > 0 and K(z,s) > 0,Y(t,s) € [a,T]>.
— Property (iv). Through direct accounts we can check that G(z,s) is nondecreasing w.r.t.
t € [a,T].

ot (1ot O o e (e \ 92 o
a—G(r s)y=4 Heb (TS> P e (T sl a<s<r<T
ar Pl (e N9,
r(a—l)( P ) P a s<T.
(19)

Thus, G(t,s) is increasing with respect to t € [a, T| and therefore, G(t,5) < G(T,s), fora <t,s <
T. Furthermore, for ¢ < s, we have

oK(ts) 1P (spz _”pz)czspz—l L lo— )Pt (sz —t"z)czspz—l
di Flo-1)\ p (o) > =

P! oo (sPZ — P2 ) o (sPZ —aP? > o-2
Lo—1) P2 p2 ’
1 c—2 N c—2
PRGN (u) _ (M) ~o.
I'(o—1) P2 P2

Fora <s<t<T,wehave

OK(tys) _ —t»! (PPN Ly
at  T(o-1) 0 SR

/A

t

)

t

N
N

Thus, K(t,s) is nonincreasing with respect to ¢ . Consequently K(¢,s) < K(a,s) Vt,s € [a,T].
On the other hand, whent > s

G(t,s)  (a—1)(tPr —aPr) (TP —sP1)* =2 — (tP1 —sPr)0~ 1
G(T,s)  (a—1)(TP1 —aPr)(TP1 —sP1)0=2 _ (TP1 —gpPr)0t—1"

(= 1)(tP1 —aP)(TP = P32 — (1P — 1) (= )“71
(

PT—aPl
a—1)(TPr —aP)(TP1 —sP1 )22 — (TP1 — gp1)o—1

ICMA2021-7



Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

»\B o\ B
As (;,f:;‘,j) < (;5:‘;2) for B > 0, we obtain

G(t,s) (o —1)(tPr —aP)(TP 7sP1)a—27 (¢P1 7sP|)a—1 (T”‘ —sP1 >a71

TP1 —aP1
> — — )
G(T,s) (00— 1)(TPr —aPr)(TP1 — sP1)&=—2 — (TP — sp1)a—1
N (;Pl 7aP1)0‘*] (Ot _ 1) (Tpl ,apl)o‘—l ([Pl ,aP1)2*0‘(TP1 7391)0‘*2 _ (TPI ,Spl)a—l
- (TP _apl)o"l (a—1)(TPr —aPr) (TP —sPr)a=2 (TP —gpr)o—1 ’

o2
) (L=t )™ (= 1)(TP —aP) (TP — P12 (791 — gP1) !
~ (1P —ap)®] (00— 1)(TP —aP1)(TP1 — sP1)@=2 — (TP — gpr)a—1 ’
(tpl _apl)lel
>
= (TP' 7ap])0671

For t <s, we have

1 p—1
G(t,s) _ pr = sP (TP Py 1
(tPr — aPr )‘x’l INa-1) (tPr — aPr )0572 ’
which is a nonincreasing function as o > 0. Consequently, o fi,t;;f))“*l > T mG_(Zr;%“*l , which

. . 1P1 — Pl a—1
implies G(t,s) > <Tpl o ) G(T,s).

o—1
Using similar techniques, one can prove that K(z,s) > (lﬁj:;ﬁi ) K(a,s), fora < s,t <
T. Therefore (iv) of Lemma[I0]holds.
— Property (v). Again, we can consider two cases. Nevertheless, we prove the results for

the case s < ¢ only. The simpler case a <t < s < T can be treated similar arguments.
When s <t we have

Gltys) (1P —apry (TP =50 )]
o 1 — = _ P —gP oa—1
G(T,s) thr=1py(a—1) (afl)(TplfsPI)a 27%
Consequently,
1 1 72
Gi(t,s) (TP —aPr) < [(Tp —s7)°
o 1 — >~ . P1 P a—1
GUT.5) 0 =tpr (o= 1) = gy (71 — oy T
- 1
= Pl —gP1) ?
(@—1)— o)
< 1
“(a-2)

Using similar techniques, we get

| K/(t,5) | (TP2 —aP?)
K(a,s) th~1p,
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On the other hand,
Gi(t,s) (TP —a?) (a—1) [(Tp‘ — P2 (P — gP1)O2
G(T p1—1 = T
o g (@ —1) (TP —sP)" *ﬁ
(tpl _spl)OFZ
R

t 1(o—2) _ ?pl a-2
Zl_<T)P (;_((}))pl> |

£\ P1(a=2)
SO
T
Thus, the proof is completed. m
Now, consider the Banach space E = C?,l (/). We can define norm
2 k
[[ull = kzomaantST‘ﬁp]u(t)‘v

and the cone
E = {u € E : u is nonnegative and increasing }.

Lemma 11 Let u be the unique solution of the BVP (I3) associated to a given g(t) € C*(J).
Then u € E, and the following inequality hold fort € [0,0] C (a,T).

QP _ gP o—1
t —_—_ M ||ul|, 20
min ) > (75 ) Ml 20

where

) oa—2 (TP —gP ) TP _ gP1\ 2@ 1 @P1 — gp1\ ! T
M4mln{1 1<p]>,mm{r(o¢—l)< o ) 7(ﬁ1)g} X (Tplfapl> Z(G)/a G(T,s)ds, ¢,

a3 :
Z(t) =95 (<1T"522 g;zz) ) and ¢ = (rr=ghira=) MAka<i<T {f; (Spl;lam> PP aP P ds}

Proof. From Lemma (@), we have

/ G(1,5)0p (/ K(s,7)g )dv+ (%) N/uTH(n,s)q)ﬁ </aTK(s,‘E)g(»L-)dT> .
" (%) A+ 05 (/HT K(“ﬁ)g(f)dr) .

(1) The functions G,H, and K are non-negative (Lemma @)-(iii)). Thus, u is also non-
negative. Furthermore, as G is increasing w.r.t.  (Lemma (T0)-(iv), so it is the function u.
(2) As u is non-negative and increasing, we have

22 / GTS%(/ K(s,7)g )ds
TPI 7apl .
+( HPl) /Hnsq)p(/Ksr )
TP — gPt T
(o )2 ([ K@ s(eise).

ds
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For ¢ € [, 6], using (iv) of Lemmaand the fact that (?,‘;1 :Z,ill ) <1, we get

T /g1 _gpr\ ¢! T
u(t) > /a (m) G(T,s)¢5 (/a K(s, T)g(r)d’c) ds
@P _gPi\ 2 /41 P T T
+ (m) X (m) H/a H(n,s)9p (/a K(Svf)g(f)d":) ds
9P _ gp1\ @2 P _ g1 9P _ g1\ &1 T
i (TP' *a"‘) g (Pl fum)/l i (T”l *a"') 0 (/ K(a’r)g(r)dr)'

Consequently,
9P _gpi\ %!
> -
u(t) - (TPI —aP ) argag(T‘u )‘ @D

(3) We have
T T
8 u(r) = 1" / G(1,5)9 ( / K(s,r)g(r)dr)ds

)05 (/ "k, T)g(‘r)dr) ds + ﬁ 22)
From LemmalT0|((ii) and (), we can deduce that 8, u(1) > 0 and
5,;Iu(t)</;%mp7_‘am Ts¢p(/Ks‘c )dr)ds
+(17 )/ ¢,,(/ K(s,7)g )derﬁ,
Sl G(T,sm,a( [ ks oe(erae ) o
e
<Z—:;ﬁx /a (Ts)q)p(/ K(s, )()dr)dswt(%)Jr
u(%)/ nsq),,(/ K(s,7)g )dr)ds+¢p(/ K(a,7)g (r)dt)},

a—1 p;
Sa—a7m a0 =

(4) A straightforward calculus gives

1 t /P gP1\ &3 T
531u(t):—r(a72) / (t pls ) P11 gy (/ K(s,r)g(’c)dr)ds. 24)

Then, we get :

g < 0 ([ Ktamstorae) x oo () s

<95 (/aT K(a, T)g(T)df) % r(alf - (zPI ;lapl )azl

ICMA2021-10
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Thus,

T 1 TP _ gP1\ ®2
s (330 < 0p [ Ktaonene) ot (70

o—1
By multiplying both sides of the previous inequality by ¢35 ((%) ) , we get
TP —sP2\ ! T (TP _gp2\O! 1 TP — P\ %2
¢p ((w) afg?g‘T| u(t)| < ¢p /a (w) K(a,7)g(7)dT Fa—1) ( o ) ;

using Lemma (10)-(iv), we get :

TP2 _ P2\ 01 T 1 TP — P\ %2
(7)) oo <on ([t g ()

(25)

We multiplying both sides by G(z,s) and integrate over [a,T] w.r.t. s, we get
TP2 — P2\ 0!
afgég;\ \/ G(t,s)9 <(sz—apz) )ds
1 TP _ gP1 a=2 . T
ST ( pi ) / G(t,5)9 ( / K(s,1)(t )dr) ds,
1 TP —gPr\ %2 T P — P
< K(s g (=Y,
I'a—1) ( 01 > { 5)p / ) s (m—upl)
(l‘plfapl) /'TH( )5 (/ K(s,7)g( )d)d ( K(a,7)g(t)d )}
- 8 T)dt s+ / a T 7)dzT ,
pr—ppi )M S T 9
1 TP _ gPt o—2
o F((X—l) < P1 ) M(t)v

o 1 TP1 _ gP1\ &~
< t
INo—1) ( P ) argtngW( )

Furthermore, for ¢ € [, 6]

T TPz P2\ 1 P gpr \ 21 T
/a G(t S)(P (m) ds = (W) Z(O)/a G(T,s)ds,
P2 _ sP2 -1
>
Jé’ra?f' |/ Glt,5)9 <<szapz) )ds/

tP1 — gP1 1 T 52
(W _apl) Z(6) /a G(T,5)ds max | u(z)], (26)

(5) From the equation in (24) and Remark[T], one can see that

1 t/sP_gPt\ @2 T 0
aglu(t):*r(a—l)/cl< o ) P11 g, (/a K((tp‘+ap‘fsp‘)Pl,r)g(r)d‘c) ds.
27)
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Then, from (27) and Lemma ] we get

=p t PGP\ T 1N/
83 u(t)=8) (5;”) O=-Fa=2) /( > ) P11 (/ K((tp'—i-a”‘—sp')f’l,r) g(r)dr)ds,

where

05 <LTK ((,pl +aP —sp‘)ﬁfr) g(f)df)’ _ /aTKt’ ((tPI +aP — P )ﬁ,f) ¢(T)dT x

—71 Pl_l T s 1772
(p— 1)t — / K((zp1+ap‘—spl)Pl,T>g(T)dr 28)
([‘pl +apl —SPI)T a
Thus,
-1 it PP\ @3 T 1
|5glu(t)\:r(a 2)/ (S p“ ) sPH/ K,'((t”‘+ap‘—s”‘)"l,17)g(’c)dr><
- a 1 a
5_ T p=2
(p=1) - / K((tp‘+aplfsp‘)ﬁ,r)g(r)dr ds,
(lpl +apl —spl) Pl
-3
02 t [P _gPt\ %> p-t T
s (TPz—aPZ)F(a—Z)/a ( pi PP P =P /a K(a,7)s(m)d
5—1 T p—2
p-l) / K(a,0)g(t)dt|  ds
(;P1+aP1_sP1)T a
T t P1 _ 4P1 a—3 pr—p
s B P2 s a pi—1 (p PP P2 —PL
T t P gPr\ &3 PP
- P2 s —a —1 2-F1
< —1o; K P1 P1 P1 _ P1\ p
(=15 </a (a,T)g(T)dr) (TP2 —aP2)I'(00 —2) argtng{/a< P1 ) g (" +a ) ds},
Then,
T
3 —
s 133,000 < (7= 105 ([ Klamie)ar) xs. 29)
Asin (2).

(6) From the inequalities (ZT)), 23), (26) and (Z9) one can see that, equationZ0) is a direct
consequence of the previous results.
|

Then, for selected [, 0] C (a,T), we define the cone

) §P1 — gpr\ &1
and the integral operator 43 : & — E defined for 7 € [0, 6] by
T T
F200 = [ 6905 [ Ks,oIes wiear) as
tP1 — gP1 T T
(520 [T o ([ K Rer wie)yae s

p1—HUpi
P gP1 T
+ (m) A+ ¢p (/a K(a,f)cf(u(r))dr) . (30)
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We have %, (#) C & and fixed points of .%) are solutions of (I). To use some fixed point
Theorems, we need to show that .4} is completely continuous.

Lemma 12 []] Let h,s > 0. For any x,y € [0,c], the following propositions hold.
1 If s> 1, then |x* —y*| < sh*~Hx—y.
2 If 0<s< 1, then |x* —y*| < [x—y|"

Lemma 13 The integral operator %), : € — € is continuous and compact.

Proof.
The continuity of .%#_is a consequence of the continuity and positiveness of G, K, ¢ and f.
To prove that .%, is compact, let us consider a bounded subset Q C 7. Then, there exists
L > 0 such that for any u € Q we have

| (u(@))] < L.

For any u € Q, as .% (u) is positive , continuous and G is increasing w.r.t. £, The maximum is at

the valuet =T i.e.,
max | 7 (u(r)) |= 5, (u(T)).

Consequently, from the above inequality, we get

| 7300 105 [ Kta.oictae) x| [ Giropassn (T [T+

P1 _ gP
+A (u) - L 31)
P1—Hp1

Then, as in Lemma (TT), we obtain .
[Fpull <NL,

a2 5 oa—1 -1
where N = 4max{17 ol () ,max{ﬁ (Tm’;am ) 71} X ((%: = ) z(0) [F G(T,s)ds) }

Hence, .%, (Q) is uniformly bounded. Furthermore, by using Lemmas (9), (12), (I0) and Le-
besgue dominated convergence theorem, we deduce the equicontinuouty of .7 (). Therefore,
7, is completely continuous by Arzela-Ascoli Theorem. m

In order to avoid repetition in the remaining, we use the following notations.

e S0 /)
f0~—rg0+ ¢p () H“"Pﬂ( )

9P _ g1\ &1
V= (ﬁ) M,
T TP —gPr\ T T -1
Ay = {(/ﬂ G(T,s)ds+u(m)/a H(n,s)ds+1)><¢,; (/a K(a/r)cdr)} ,
_ T
Azzz{ ;m(/GTsds—ﬁ— ﬁ“)/aH(ms )Xq)p(/KaT )]

1

7.f°°_

Az := F(a]—l) (Tp]p_lapl)a2x¢p(/aTK(a,1:)cdr)}, A4:_{ p—1 (/ arcdr)} 1,
i) mmeon ([ o on (G Yme) xon ([ ““"fﬂl’
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4. STUDY THE EXISTENCE OF SOLUTIONS IN A CONE

In this section, we set some hypotheses to derive an interval for A which ensures the exis-
tence of positive solutions of the BVP ().

(H1) There exist R; > 0and m; € (0,min A‘,Az,ﬁ,ﬁ such that
8844

f(r) < ¢p (m1R1)7 Vre [0>R1]7
(H2) There exist R, > 0 and my € (As,0) such that

f(r) = ¢p(maRy), Vre€[yRy,Ry],

(H3)
(H4)
rete((3)

Theorem 14 Assume that the conditions (HI)and (H2) hold, and 0 < R| < R,. Then, the BVP
(@) has at least one positive solution for A > 0 small enough.

Proof. Let 2, = {u € E : ||lu|| <R} and A satisfying

(I-wRy P1
0<A< g min I’TPI—aPI . (32)

Letu € ENJ P, ie., |lul| = Ry. From (H1) and (32)), we have

max | .7 (u(t)) |= F; (u(T)) /Gqu),,(/KsTCf (1))dt )

a<st<T
TP — gP1
( HP])/HnS q)p(/Ks‘L' ))dr)ds

+ (%) A+0p (/T K(a,r)cf(u(r))dr) :

Then,

max | 7 (u(0)) |< % K/T G(T,s)ds + (%) ./aTH(n,s)ds—O— 1) X 0p ('/aTK(a,T)cd’c)] +%.

Consequently,

Ry Ry _ |u|
<— — )

Jax [ F @) IS g+ =7

Similarly, we obtain
3

3)u

<=

Y, max | 8,7 () <=

k=14
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Therefore, we conclude that
| Zpull <|lull, YueENIZ. (33)

On the other hand, we set &%) = {u € E : ||u|| < Ry }. Then, for any u € ENd 27, by Lemma

(TT) one has

R, > min u(7) > YR;.
7€[0,0]

Using hypothesis H2, we get

Fo(T) > (?’;‘l :Z‘;) [/ G(T,s)8p (/ K(s,7)ef (u ))dr) ds+ (%) /aTH(n,s)
([t (Z2 ) [ )

> (M)almmmm ([ o vn (T )t ) <op ([ Kta5eae)

> (M)alAstyz (/ G(T,s) (IT:I 15:: ) H(n,s)ds) X §p (/HTK(a,r)cd‘c>

=Ry = ||u|.
Which implies that

|- Zpull = ||lul|, forany wueENJII. (34)

Therfore, from (33), (34), R; < Ry and by applying the first part of Theorem (6), we deduce
that, the operator ., has at least one fixed point u € EN 2,\ &), which is positive solution of
BVP ().

]

Theorem 15 Assume that all conditions (H1), (H2) hold. Then, the BVP (ID has no positive
solution for A large enough.

Proof. Fome Technical Contradiction, we get the desired result m
Remark 2

If fo =0, fw = co. hold, then the condotions (H1) and (H2) hold respectively. Moreover, if the
function f is nondecreasing, the following theorem holds.

Theorem 16 Assume that the hypotheses of Theorem (14) hold and that f is nondecreasing.
Then, there exists 2* > 0 such that the BVP (1)) has at least one positive solution for A € (0,1*)
and has no positive solution for A € (A* o).

Proof.

Let ® = {4, the BVP (1) has at least one positive solution} C R%. and A* = sup®. It fol-
lows from Theorem (T4)) that © # @ and thus A* exists. We denote by uq the solution of BVP (T)
associated to Ay and

H (ug) ={u€E:ut) <up(t),vt € a,T]}.

Let A € (0,4) and u € £ (up). It follows from the definition of .#; (30) and the monotonicity

of f that for any ¢
F (1)) < F3 (uo(t)) = uo(1).

Thus, % (£ (uy)) C # (up). By Shaulder’s fixed point theorem we know that, there exists a
fixed point u € # (up), which is a positive solution of (I). The proof is completed. m
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Theorem 17 Suppose that f satisfies (H3) and (H4). Then, the BVP (1)) has at least one positive
solution forfor A > 0 small enough.

Proof. Firstly, from the definition of fy, for all € > O there exists an adequate small positive
number (&) such that

fr) < (e+onP ' <(e+wnd(e)P~!, Vrel0,8(e)].
Then, for € = k»~! — @/ we have

£ <k '8(e)r ! < (2k8(e))" (35)

It’s enough to take Ry = (&) and m; = 2k € (0, min { %, %, %, % }), i.e., the conditions (H1)
holds.

. p-1 . . .
Next, since foo = & € ((%) ,00), then for every € > 0, there exists an adequate big positive

number R, # R; such that
f)z(E—e) > (E—e) (YR)P™, Vr> 1R,

p—1
Hence, fore =& — (%) we get

2As

p—1
y ) (YR2)P ™! = (2AsRy)" (36)

CE (

Let my =2As > As, thus condition (H2) holds, by applying Theorem[T4] we complete the proof.
]

5. AN APPLICATIONS
In this section, we give an example to illustrate the usefulness of our main results.
Example 1 Let us consider the following fractional BVP

5 3
CHy? (¢,, (C*H@;,M)) (1) + 23 (1) =0, el <t<e?,

2 27

Here

5 H
C-Hg ’, and C-Hg >~ are the left and right-sided Caputo-Hadamard fractional derivatives.
e e

We can easily show that f(u(t)) = u (¢) satisfy :

I () I B L
=08 0000 Jm u() =0, fo = lim o3 -

ICMA2021-16



Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

Then obviously,

2

e Al Ay A3 A

(/] K(el,r)cdr) =1, min{?l, ?2 73, 7“} ~ 0.014589936, As = 15.13154296.
e

So, all conditions of Theorem[I4 hold, then we can choose Ry > Ry and for A satisfies 0 < A <
3%1?1, such that

Pr={u€cE:|ul| <R}, Zr={ucE:|ul| <Ry}.
Then, we can show that, the BVP has at least one positive solution u € EN (P, \ ) for
A small enough.

6. CONCLUSION

In this words we have discussed the existence and the uniqueness of solutions for a class of
nonlinear fractional differential equations with a boundary value, by using the properties of the
Green functions associated to (), the Guo-Krasnosel’skii and Banach fixed point theorems.
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