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ABSTRACT

In this manuscript, we deal with a study of the existence and the multiplicity of ρ1-concave
positive solutions for a boundary value of two-sided fractional differential equations involving
generalized-Caputo fractional derivatives. An application of a functional analysis tools, more
specifically, we using some fixed point theorems and under some additional assumptions, some
of important results have been proven and we obtain the existence of at least one solution.
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1. INTRODUCTION

Lately, many researches on fractional differential problems have been dealt with by many
researchers. Especial, fractional p-Laplacian has been used in modeling different problems, for
exampale in science, engineering, biology, [6, 8, 9, 10, 11, 19] etc.

In this words, we consider the following fractional boundary value problem (FBVP) :
ρ2;CDσ

T−
(
φp
(

ρ1;CDα

a+u
))

(t)+ c f (u(t)) = 0, a < t < T,

u(a)+ρ1;CDα

a+u(a) = 0, δ 2
ρ1

u(a) = 0, δ 1
ρ1

u(T ) = µδ 1
ρ1

u(η)+λ ,

ρ1;CDα

a+u(T ) =−δ 1
ρ2

[
φp
(

ρ1;CDα

a+u
)]
(a) = δ 2

ρ2

[
φp
(

ρ1;CDα

a+u
)]
(T ) = 0,

(1)

where
— ρ1;CDσ

a+ ,
ρ2;CDα

T− are the left and right-sided Caputo-Katugampola fractional derivatives
with ρ1,ρ2 ∈ R−{1} and 2 < σ ,α 6 3,

— φp is the p-Laplacian operator, i.e., φp(s) = |s|p−2s, p > 1, δ k
ρ =

(
t1−ρ

d
dt

)k
,

— f is continuous and positive.
— η ∈ (a,T ), 0≤ µ < 1, c≥ 0 and λ ≥ 0.
In [15], Chuanzhi Bai used the Guo-Krasnoselskii fixed point theorem and the Banach

contraction mapping principle to prove the existence and uniqueness of positive solutions for
the FBVP : { (

φp
(
Dα

0+u
))′

(t)+ f (t,u(t)) = 0, 0 < t < 1,
u(0) = Dα

0+u(0) = 0, cDβ

0+u(0) = cDβ

0+u(1) = 0,
(2)
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where 0 < β ≤ 1,2 < α < 2+β ,Dα

0+ and cDβ

0+ are the Riemann-Liouville and Caputo fractional
derivatives of orders α,β , respectively, p > 1, and f : [a,b]×R→ R is a continuous function.

Chai [1], obtained some results for the existence of at least one nonnegative solution and two
positive solutions by using a fixed point theorem on a cone for the nonlinear FBVP{

Dβ

0+
(
φp
(
Dα

0+u
))

(t)+ f (t,u(t)) = 0, 0 < t < 1,
u(0) = 0,u(1)+σDγ

0+u(1) = 0, Dα
0+u(0) = 0,

(3)

where 1 < α ≤ 2, 0 < β ,γ ≤ 1, 0≤ α− γ−1, and σ > 0.
Using the fixed point index theory, Su et al. [13] studied the existence of positive solution

for a nonlinear four-point singular FBVP{ (
φp (u′)

)′
(t)+a(t) f (u(t)) = 0, 0 < t < 1,

αφp(u(0))−βφp (u′(ξ )) = 0, γφp(u(1))+δφp (u′(η)) = 0,
(4)

where α,γ > 0,β ,δ ≥ 0,ξ ,η ∈ (0,1), and ξ < η .
Su [12] applied the fixed-point index theory to study the existence of positive solutions for

the nonlinear third-order two-Point singular boundary value problem{ (
φp

(
u(n−1)

))′
(t)+a(t) f (u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · ·= u(n−3)(0) = u(n−1)(0) = 0, u(1) = ∑
m−2
i=1 αiu(ηi) ,

(5)

where 0 < η1 < η2 < · · ·< ηm−2 < 1,αi > 0 with ∑
m−2
i=1 αiη

n−2
i < 1.

Using the coincidence degree theory, Tang et al. [14] gave a new result on the existence of
positive solutions to the FBVP{

cDα

0+

(
φp

cDβ

0+u
)
(t) = f

(
t,u(t), cDβ

0+u(t)
)
,

u(0) = 0, cDβ

0+u(0) = cDβ

0+u(1),
(6)

where 0 < α,β ≤ 1,1 < α +β ≤ 2.
Torres [16], studied the existence and multiplicity for a mixed-order three-point boundary

value problem of fractional differential equation evolving Caputo’s differential operator and the
boundary conditions with integer order derivatives{ (

ϕp
(cDα

0+u
))′

(t)+a(t) f (t,u(t)) = 0, 0 < t < 1,
cDα

0+u(0) = u(0) = u′′(0) = 0, u′(1) = γu′(η),
(7)

where η ,γ ∈ (0,1),α ∈ (2,3].
Base on the coincidence degree theory, Chen et al. [2] gave new results about the problem{

cDβ

0+φp
(cDα

0+x
)
(t) = f

(
t,x(t), cDα

0+x(t)
)
, t ∈ [0,1],

cDα

0+x(0) = cDα

0+x(1) = 0,
(8)

where 0 < α,β ≤ 1,1 < α +β ≤ 2.
It can be seen that our work presented in this words has some following features which are

different from those [2, 16, 14, 12, 13, 1, 15], in addition to this, the appropriate manipulations
of the controls ρ1, ρ2, α , σ , c, λ , µ and η , allow us to see the impact and the extent of our study.
Add to this there is no known research paper that delves deeper than us into extracting some
of the properties of the Greens functions which used to study the existence of solutions, special
when the non-integer order of the fractional derivatives is huge.

In this words, we obtain some sufficient conditions ensuring the existence of at least one po-
sitive solutions for the BVP (1). The rest of the paper is organized as follows. Section 2 presents
some basic definitions, lemmas, and preliminary results. In Section 3, we present some important
lemmas. In Section 4, we derive some conditions on the parameter λ to obtain the existence of
at least one positive solution. Finally, we give some illustrative examples in Section 5.
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2. PRELIMINARIES AND BACKGROUND MATERIALS

Notations
In addition to the notations introduced with the problem (1), let J = [a,T ] ⊂ (0,∞), and

ρ > 0.
1. C(J) denotes the Banach space of continuous functions h on J endowed with the norm

‖h‖C = max
x∈J
|h(x)|.

2. AC(J) and Cn(J) denote the spaces of absolutely continuous and n times continuously
differentiable functions on J respectively.

3. Lp(a,T ) denotes the space of Lebesgue integrable functions on (a,T ).
4. Cn

ρ (J) is the Banach space of n continuously differentiable functions on J, with respect to
δρ :

Cn
ρ (J) =

{
h ∈C(J) : δ

k
ρ h ∈C(J),k = 0,1, ...,n

}
,

endowed with the norm

‖h‖Cn
ρ
=

n

∑
k=0
‖δ k

ρ h‖C.

5. [α] is the largest integer less than or equal to α . Throughout the words, we use n= [α]+1.
6. C+(J) = {y ∈C(J), y(t)≥ 0 ∀t ∈ J}.

2.1. Fractional calculus

We present here basic definitions and lemmas from fractional calculus theory (See [6, 8, 9,
10, 11, 5] and references therein).

Definition 1 (Function space) For c ∈ R, consider the Banach space

X p
c (a,T ) =

{
h : J→ R : ‖h‖X p

c
:=
(∫ T

a
| tc h(t) |p dt

t

) 1
p

<+∞

}
.

Now, we recall the Katugampola (K) and Caputo-Katugampola (CK) fractional integrals and
derivatives [5].

Definition 2 For a function u ∈X p
c (a,T ), the Katugampola left-sided (ρI α

a+ ) and right-sided
(ρI α

T− ) fractional integrals of order α > 0 are defined by

ρI α

a+u(t) =
ρ1−α

Γ(α)

∫ t

a
(tρ − sρ )α−1sρ−1u(s)ds, t > a,

ρI α

T−u(t) =
ρ1−α

Γ(α)

∫ T

t
(sρ − tρ )α−1sρ−1u(s)ds, t < T.

Remark 1 For a function u∈X p
c (a,T ), the Katugampola left-sided (ρI α

a+ ) fractional integrals
of order α > 0 can be geven by the generalized convolution of u and h

ρI α

a+u(t) =
(
h?g u

)
(t) =

∫ t

a
h(s)u(g−1 (g(t)+g(a)−g(s))g′(s)ds, t > a,

where h(t) = 1
Γ(α)

(g(t)−g(a))α−1 and g(t) = tρ

ρ
. For more detailes see [20]. This generalized

convolution of two functions is commutative.
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Next, we present some properties for left-sided integrals. But, the same properties are also
true for the right-sided ones.

Lemma 1 Let c ∈ R, α,β ,ρ > 0, and 1 ≤ p ≤ ∞. Then, for all u ∈X p
c (a,T ), we have the

following.
— ρI α

a+ : X p
c (a,T )→X p

c (a,T ).
— ρI α

a+ is linear.

— ρI α

a+ ◦
ρ I

β

a+ = ρI
α+β

a+ .

Definition 3 For a function u ∈Cn
δ
([a,T ]) (or ∈ ACn

δ
([a,T ])), the Caputo-Katugampola fractio-

nal derivatives are defined by :

ρ1;CDα

a+u(t) =ρ1I n−α

a+ δ
n
ρ1

u(t).

ρ1;CDα

T−u(t) = (−1)n ρ1I n−α

T− δ
n
ρ1

u(t).

Lemma 2 Let β > α > 0, h ∈M p
c (a,T ), u ∈ ACn

δ
([a,T ]) or Cn

δ
([a,T ]). Then we have

ρ;CDα

a+
ρI

β

a+h(t) =ρI
β−α

a+ h(t), (9)

ρI α

a+

(
ρ;CDα

a+u
)
(t) = u(t)−

n−1

∑
k=0

Ck

(
tρ −aρ

ρ

)k
, (10)

ρI α

T−

(
ρ;CDα

T−u
)
(t) = u(t)−

n−1

∑
k=0

Dk

(
T ρ − tρ

ρ

)k
, (11)

for some real constants Ck and Dk.

Lemma 3 If ρ;CDα

a+u ∈C(J), then u ∈Cn−1
ρ (J).

Lemma 4 If u ∈C1(J), then

δ
1
ρ

(
ρI α

a+u
)
(t) =

1
Γ(α)

∫ t

a

(
sρ −aρ

ρ

)α−1 sρ−1

(tρ +aρ − sρ )
ρ−1

ρ

u′((tρ +aρ − sρ )
1
ρ )ds ∈C(J)

.

2.2. Fixed point theorems

Let E be a real Banach function space, endowed with the infinity norm.

Definition 4 A nonempty closed convex set K ⊂ E is called cone if the following properties are
satisfied.

1. ∀u ∈ K, ∀λ > 0 : λu ∈ K.

2. ∀u ∈ K :−u ∈ K =⇒ u = 0.

Definition 5 A continuous operator is called completely continuous if it maps bounded sets into
precompact sets.

Let K ⊂ E be a cone, r > 0, Pr = {u ∈ K : ‖u‖< r}, and i is the fixed point index function.
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Theorem 5 ( [4],[3]) Let L : K∩Pr→K be a completely continuous operator such that L u 6=
u for all u ∈ ∂Pr.

1. If ‖L u‖6 ‖u‖ for all u ∈ ∂Pr, then i(L ,Ωr,K) = 1.

2. If ‖L u‖> ‖u‖ for all u ∈ ∂Pr, then i(L ,Ωr,K) = 0.

Theorem 6 (Guo-Krasnoselskii [6]) Assume that P1 and P2 are open subsets of E with 0 ∈
P1 and P1 ⊂P2. Let L : K∩ (P2 \P1)→ K be completely continuous operator. Consider
(D1) ‖L u‖ ≤ ‖u‖,∀u ∈ K∩∂P1 and ‖L u‖ ≥ ‖u‖,∀u ∈ K∩∂P2,
(D2) ‖L u‖ ≤ ‖u‖,∀u ∈ K∩∂P2 and ‖L u‖ ≥ ‖u‖,∀u ∈ K∩∂P1.

If (D1) or (D2) holds, then L has a fixed point in K∩ (P2 \P1).

3. MAJOR RESULTS

We present some important lemmas which play a key role to prove the major results.

3.1. Lemmas

Consider the linear generalized boundary-value problem associated to (1){
ρ1;CDα

a+u(t)+ y(t) = 0, a < t < T,

u(a)+ρ1;CDα

a+u(a) = 0,δ 2
ρ1

u(a) = 0,δ 1
ρ1

u(T )−µδ 1
ρ1

u(η) = λ .
(12)

Lemma 7 For y ∈C(J), the integral solution of (12) is given by

u(t) =
∫ T

a
G(t,s)y(s)ds+

(
tρ1 −aρ1

ρ1(1−µ)

)
µ

∫ T

a
H(η ,s)y(s)ds+

(
tρ1 −aρ1

ρ1(1−µ)

)
λ + y(a).

where

G(t,s)=


1

Γ(α−1)

(
tρ1−aρ1

ρ1

)(
T ρ1−sρ1

ρ1

)α−2
sρ1−1− 1

Γ(α)

(
tρ1−sρ1

ρ1

)α−1
sρ1−1, a≤ s≤ t ≤ T ,

1
Γ(α−1)

(
tρ1−aρ1

ρ1

)(
T ρ1−sρ1

ρ1

)α−2
sρ1−1, a≤ t ≤ s≤ T,

(13)
and

H(η ,s) =


1

Γ(α−1)

(
T ρ1−sρ1

ρ1

)α−2
sρ1−1− 1

Γ(α−1)

(
ηρ1−sρ1

ρ1

)α−2
sρ1−1, a≤ s≤ η ≤ T,

1
Γ(α−1)

(
T ρ1−sρ1

ρ

)α−2
sρ1−1, a≤ η ≤ s≤ T.

(14)

Proof. By applying (10) and from the boundary conditions of (12) we get the desired result. The
converse follows by direct computation. The proof is completed.

Now, consider the generalized boundary-value problem associated to (1)
ρ2;CDσ

T−
(
φp
(

ρ1;CDα

a+u(t)
))

= g(t), a < t < T,

u(a)+ρ1;CDα

a+u(a) = 0,δ 2
ρ1

u(a) = 0, δ 1
ρ1

u(T )−µδ 1
ρ1

u(η) = λ ,

ρ1;CDα

a+u(T ) = 0,−δ 1
ρ2

[
φp
(

ρ1;CDα

a+u
)]
(a) = 0,δ 2

ρ2

[
φp
(

ρ1;CDα

a+u
)]
(T ) = 0.

(15)
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Lemma 8 Let g(t) ∈C+(J) and y(t) = φp̄

(∫ T
a K(t,τ)g(τ)dτ

)
, the problem (15) is equivalent

to the problem (12) where

K(t,s) =


1

Γ(σ−1)

(
T ρ2−tρ2

ρ2

)(
sρ2−aρ2

ρ2

)σ−2
sρ2−1− 1

Γ(σ)

(
sρ2−tρ2

ρ2

)σ−1
sρ2−1, t ≤ s,

1
Γ(σ−1)

(
T ρ2−tρ2

ρ2

)(
sρ2−aρ2

ρ2

)σ−2
sρ2−1, s≤ t,

,

(16)

Proof. From Lemma 2, the equation (15) is equivalent to the equation

φp
(

ρ1;CDα

a+u(t)
)

=−D0−D1

(
T ρ2−tρ2

ρ2

)
−D2

(
T ρ2−tρ2

ρ2

)2
+ρ2 I σ

T−g(t),

for some constants D0,D1,D2 ∈ R. Using the second boundary condition, we get

φp

(
ρ1;CDα

a+u(t)
)
=ρ2I σ

T−g(t) −
(

T ρ2 − tρ2

ρ2

)
× 1

Γ(σ −1)

∫ T

a

(
τρ2 −aρ2

ρ2

)σ−2
τ

ρ2−1g(τ)dτ

=−
∫ T

a
K(t,τ)q(τ)dτ.

Consequently,
ρ1;CDα

a+u(t) =−φp̄

(∫ T

a
K(t,τ)g(τ)dτ

)
,

where p̄ = p
p−1 . Thus, the problem (15) can be written as{

ρ1;CDα

a+u(t)+φp̄

(∫ T
a K(t,τ)q(τ)dτ

)
= 0, t ∈ (a,T ),

u(a)+ρ1;CDα

a+u(a) = 0,δ 2
ρ1

u(a) = 0, δ 1
ρ1

u(T ) = µδ 1
ρ1

u(η)+λ ,
(17)

which, according to Lemma 7, has a unique solution of the form (18).

Lemma 9 For g(t) ∈C+(J), the BVP (15) has a unique solution

u(t) =
∫ T

a
G(t,s)φ p̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds+

(
tρ1 −aρ1

ρ1−µρ1

)
µ

∫ T

a
H(η ,s)φ p̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds

+

(
tρ1 −aρ1

ρ1−µρ1

)
λ +φp̄

(∫ T

a
K(a,τ)g(τ)dτ

)
, (18)

where G(t,s), H(t,s) and K(t,s) are defined in the previous Lemmas 7.

Lemma 10 The functions G, H and K (Equ. (13), (14), and (16)) satisfy the following.
(i) G(t,s) , H(t,s) and K(t,s) are continuous on [a,T ]× [a,T ].

(ii) ∀(t,s) ∈ [a,T ]× [a,T ] :

G(t,s)6
(

T ρ1 −aρ1

ρ1

)α−1 T ρ1−1

Γ(α−1)
,
∫ T

a
G(t,s)ds=

(
tρ1 −aρ1

Γ(α)ρ1

)(
T ρ1 −aρ1

ρ1

)α−1
− 1

Γ(α +1)

(
tρ1 −aρ1

ρ1

)α

,

H(n,s)6
(

T ρ1 −aρ1

ρ1

)α−2 T ρ1−1

Γ(α−1)
,
∫ T

a
H(n,s)ds=

1
Γ(α)

((
T ρ1 −aρ1

ρ1

)α−1
−
(

ηρ1 −aρ1

ρ1

)α−1
)
,

K(t,s)6
(

T ρ2 −aρ2

ρ2

)σ−1 T ρ2−1

Γ(σ −1)
,
∫ T

a
K(s,τ)dτ =

T ρ2 − sρ2

ρ2Γ(σ)

((
T ρ2 −aρ2

ρ2

)σ−1
− 1

σ

(
T ρ2 − sρ2

ρ2

)σ−1
)
.
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(iii) ∀(t,s) ∈ [a,T ]2 : G(t,s)> 0,H(t,s)> 0,K(t,s)> 0 ;
(iv) The function t→G(t,s) is increasing and t→ K(t,s) is decreasing ∀s ∈ [a,T ]. In addition,

we have

∀(t,s)∈ (a,T )2 :
(

tρ1 −aρ1

T ρ1 −aρ1

)α−1
G(T,s)6G(t,s) and

(
T ρ2 − tρ2

T ρ2 −aρ2

)σ−1
K(a,s)6K(t,s);

(v) ∀(t,s)∈ (a,T )2 : tρ1−1ρ1
T ρ1−aρ1

[
1−
( t

T
)ρ1(α−2)

]
G(T,s)6G′t(t,s)6

α−1
α−2

tρ1−1ρ1
T ρ1−aρ1 G(T,s) and

| K′t (t,s) |6
tρ2−1ρ2

T ρ2−aρ2 K(a,s).

Proof. Using the definitions of G, H and K, (i) and (ii) are obtained straightforwardly.
— Property (iii). We only consider the case s≤ t as the other case is straightforward.

When s≤ t, we have

G(t,s)>
1

Γ(α−1)

(
tρ1 − sρ1

ρ1

)(
tρ1 − sρ1

ρ1

)α−2
aρ1−1− 1

Γ(α)

(
tρ1 − sρ1

ρ1

)α−1
aρ1−1,

>

(
tρ1 − sρ1

ρ1

)α−1
aρ1−1

[
1

Γ(α−1)
− 1

Γ(α)

]
,

> 0,
(

because Γ(α−1)6 Γ(α) for 2 < α ≤ 3
)
.

Similarly, we can easily prove that H(t,s)> 0 and K(t,s)> 0,∀(t,s) ∈ [a,T ]2.
— Property (iv). Through direct accounts we can check that G(t,s) is nondecreasing w.r.t.

t ∈ [a,T ].

∂G
∂ t

(t,s) =


tρ1−1

Γ(α−1)

(
T ρ1−sρ1

ρ1

)α−2
sρ1−1− tρ1−1

Γ(α−1)

(
tρ1−sρ1

ρ1

)α−2
sρ1−1, a 6 s 6 t 6 T ,

tρ1−1

Γ(α−1)

(
T ρ1−sρ1

ρ1

)α−2
sρ1−1, a 6 t 6 s 6 T.

(19)
Thus, G(t,s) is increasing with respect to t ∈ [a,T ] and therefore, G(t,s)6 G(T,s), for a 6 t,s 6
T. Furthermore, for t 6 s, we have

∂K(t,s)
∂ t

=− tρ2−1

Γ(σ −1)

(
sρ2 −aρ2

ρ2

)σ−2
sρ2−1 +

(σ −1)tρ2−1

Γ(σ)

(
sρ2 − tρ2

ρ2

)σ−2
sρ2−1,

=
tρ2−1

Γ(σ −1)
sρ2−1

[(
sρ2 − tρ2

ρ2

)σ−2
−
(

sρ2 −aρ2

ρ2

)σ−2
]
,

6
tρ2−1

Γ(σ −1)
sρ2−1

[(
sρ2 −aρ2

ρ2

)σ−2
−
(

sρ2 −aρ2

ρ2

)σ−2
]
= 0.

For a 6 s 6 t 6 T , we have

∂K(t,s)
∂ t

=
−tρ2−1

Γ(σ −1)

(
sρ2 −aρ2

ρ2

)σ−2
sρ2−1 6 0.

Thus, K(t,s) is nonincreasing with respect to t . Consequently K(t,s) 6 K(a,s) ∀t,s ∈ [a,T ].
On the other hand, when t > s

G(t,s)
G(T,s)

=
(α−1)(tρ1 −aρ1)(T ρ1 − sρ1)α−2− (tρ1 − sρ1)α−1

(α−1)(T ρ1 −aρ1)(T ρ1 − sρ1)α−2− (T ρ1 − sρ1)α−1 ,

=
(α−1)(tρ1 −aρ1)(T ρ1 − sρ1)α−2− (tρ1 − sρ1)α−1

(
tρ1−sρ1

tρ1−aρ1

)α−1

(α−1)(T ρ1 −aρ1)(T ρ1 − sρ1)α−2− (T ρ1 − sρ1)α−1 .
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As
(

tρ−sρ

tρ−aρ

)β

≤
(

T ρ−sρ

T ρ−aρ

)β

for β > 0, we obtain

G(t,s)
G(T,s)

>
(α−1)(tρ1 −aρ1)(T ρ1 − sρ1)α−2− (tρ1 − sρ1)α−1

(
T ρ1−sρ1

T ρ1−aρ1

)α−1

(α−1)(T ρ1 −aρ1)(T ρ1 − sρ1)α−2− (T ρ1 − sρ1)α−1 ,

>
(tρ1 −aρ1)α−1

(T ρ1 −aρ1)α−1
(α−1)(T ρ1 −aρ1)α−1 (tρ1 −aρ1)2−α (T ρ1 − sρ1)α−2− (T ρ1 − sρ1)α−1

(α−1)(T ρ1 −aρ1)(T ρ1 − sρ1)α−2− (T ρ1 − sρ1)α−1 ,

>
(tρ1 −aρ1)α−1

(T ρ1 −aρ1)α−1

(
T ρ1−aρ1

tρ1−aρ1

)α−2
(α−1)(T ρ1 −aρ1)(T ρ1 − sρ1)α−2− (T ρ1 − sρ1)α−1

(α−1)(T ρ1 −aρ1)(T ρ1 − sρ1)α−2− (T ρ1 − sρ1)α−1 ,

>
(tρ1 −aρ1)α−1

(T ρ1 −aρ1)α−1 .

For t 6 s, we have

G(t,s)

(tρ1 −aρ1)α−1 =
ρ

α−1
1 sρ1−1

Γ(α−1)
(T ρ1 − sρ1)α−2 1

(tρ1 −aρ1)α−2 ,

which is a nonincreasing function as α ≥ 0. Consequently, G(t,s)
(tρ1−aρ1 )α−1 ≥

G(T,s)
(T ρ1−aρ1 )α−1 , which

implies G(t,s)>
(

tρ1−aρ1

T ρ1−aρ1

)α−1
G(T,s).

Using similar techniques, one can prove that K(t,s)>
(

T ρ2−tρ2

T ρ2−aρ2

)σ−1
K(a,s), for a 6 s, t <

T . Therefore (iv) of Lemma 10 holds.
— Property (v). Again, we can consider two cases. Nevertheless, we prove the results for

the case s≤ t only. The simpler case a≤ t ≤ s < T can be treated similar arguments.
When s≤ t we have

G′t(t,s)
G(T,s)

(T ρ1 −aρ1)

tρ1−1ρ1(α−1)
=

[
(T ρ1 − sρ1)α−2− (tρ1 − sρ1)α−2

]
(α−1)(T ρ1 − sρ1)α−2− (T ρ1−sρ1 )α−1

(T ρ1−aρ1 )

.

Consequently,

G′t(t,s)
G(T,s)

(T ρ1 −aρ1)

tρ1−1ρ1(α−1)
≤

[
(T ρ1 − sρ1)α−2

]
(α−1)(T ρ1 − sρ1)α−2− (T ρ1−sρ1 )α−1

(T ρ1−aρ1 )

,

≤ 1

(α−1)− (T ρ1−sρ1 )
(T ρ1−aρ1 )

,

≤ 1
(α−2)

.

Using similar techniques, we get

| K′t (t,s) |
K(a,s)

(T ρ2 −aρ2)

tρ2−1ρ2
≤1.
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On the other hand,

G′t(t,s)
G(T,s)

(T ρ1 −aρ1)

tρ1−1ρ1
=
(α−1)

[
(T ρ1 − sρ1)α−2− (tρ1 − sρ1)α−2

]
(α−1)(T ρ1 − sρ1)α−2− (T ρ1−sρ1 )α−1

(T ρ1−aρ1 )

,

≥1− (tρ1 − sρ1)α−2

(T ρ1 − sρ1)α−2 ,

≥1−
( t

T

)ρ1(α−2)
(

1−
( s

t
)ρ1

1−
( s

T
)ρ1

)α−2

,

≥1−
( t

T

)ρ1(α−2)
.

Thus, the proof is completed.
Now, consider the Banach space E=C3

ρ1
(J). We can define norm

‖u‖=
3
∑

k=0
maxa≤t≤T |δ k

ρ1
u(t)|,

and the cone
E = {u ∈ E : u is nonnegative and increasing } .

Lemma 11 Let u be the unique solution of the BVP (15) associated to a given g(t) ∈ C+(J).
Then u ∈ E, and the following inequality hold for t ∈ [θ̄ ,θ ]⊂ (a,T ).

min
t∈[θ̄ ,θ ]

u(t)>
(

θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−1

M ‖u‖, (20)

where

M= 4min

{
1,

α−2
α−1

(
T ρ1 −aρ1

ρ1

)
,min

{
Γ(α−1)

(
T ρ1 −aρ1

ρ1

)2−α

,
1

(p̄−1)ς

}
×
(

θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−1

Z(θ)
∫ T

a
G(T,s)ds,

}
,

Z(t)= φ p̄

((
T ρ2−tρ2

T ρ2−aρ2

)σ−1
)

and ς = ρ2
(T ρ2−aρ2 )Γ(α−2) maxa6t6T

{∫ t
a

(
sρ1−aρ1

ρ1

)α−3
sρ1−1 (tρ1 +aρ1 − sρ1)

ρ2−ρ1
ρ1 ds

}
.

Proof. From Lemma (9), we have

u(t) =
∫ T

a
G(t,s)φ p̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds+

(
tρ1 −aρ1

ρ1−µρ1

)
µ

∫ T

a
H(η ,s)φ p̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds

+

(
tρ1 −aρ1

ρ1−µρ1

)
λ +φ p̄

(∫ T

a
K(a,τ)g(τ)dτ

)
.

(1) The functions G,H, and K are non-negative (Lemma (10)-(iii)). Thus, u is also non-
negative. Furthermore, as G is increasing w.r.t. t (Lemma (10)-(iv), so it is the function u.

(2) As u is non-negative and increasing, we have

max
a6t6T

|u(t)|= u(T ) =
∫ T

a
G(T,s)φ p̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds

+

(
T ρ1 −aρ1

ρ1−µρ1

)
µ

∫ T

a
H(η ,s)φp̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds

+

(
T ρ1 −aρ1

ρ1−µρ1

)
λ +φ p̄

(∫ T

a
K(a,τ)g(τ)dτ

)
.
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For t ∈ [θ̄ ,θ ], using (iv) of Lemma 10 and the fact that
(

θ̄ ρ1−aρ1

T ρ1−aρ1

)
< 1, we get

u(t)>
∫ T

a

(
θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−1

G(T,s)φp̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds

+

(
θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−2

×
(

tρ1 −aρ1

ρ1−µρ1

)
µ

∫ T

a
H(η ,s)φ p̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds

+

(
θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−2

×
(

tρ1 −aρ1

ρ1−µρ1

)
λ +

(
θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−1

×φ p̄

(∫ T

a
K(a,τ)g(τ)dτ

)
.

Consequently,

u(t)>
(

θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−1

max
a6t6T

|u(t)| (21)
.

(3) We have

δ
1
ρ1

u(t) = t1−ρ1

∫ T

a
G′t(t,s)φp̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds

+
µ

(1−µ)

∫ T

a
H(η ,s)φp̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds+

λ

(1−µ)
. (22)

From Lemma 10 ((iii) and (v)), we can deduce that δ 1
ρ1

u(t)≥ 0 and

δ
1
ρ1

u(t)6
∫ T

a

α−1
α−2

ρ1

T ρ1 −aρ1
G(T,s)φp̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds

+
µ

(1−µ)

∫ T

a
H(η ,s)φp̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds+

λ

(1−µ)
,

6
α−1
α−2

ρ1

T ρ1 −aρ1
×
[∫ T

a
G(T,s)φp̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds

+ µ

(
T ρ1 −aρ1

ρ1−µρ1

)∫ T

a
H(η ,s)φp̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds+λ

(
T ρ1 −aρ1

ρ1−µρ1

)]
,

6
α−1
α−2

ρ1

T ρ1 −aρ1
×
[∫ T

a
G(T,s)φp̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds+λ

(
T ρ1 −aρ1

ρ1−µρ1

)
+

µ

(
T ρ1 −aρ1

ρ1−µρ1

)∫ T

a
H(η ,s)φ p̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds+φp̄

(∫ T

a
K(a,τ)g(τ)dτ

)]
,

6
α−1
α−2

ρ1

T ρ1 −aρ1
×u(T ). (23)

.
(4) A straightforward calculus gives

δ
2
ρ1

u(t) =− 1
Γ(α−2)

∫ t

a

(
tρ1 − sρ1

ρ1

)α−3
sρ1−1

φp̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds. (24)

Then, we get :

|δ 2
ρ1

u(t)|6 φ p̄

(∫ T

a
K(a,τ)g(τ)dτ

)
× 1

Γ(α−2)

∫ t

a

(
tρ1 − sρ1

ρ1

)α−3
sρ1−1ds,

6 φ p̄

(∫ T

a
K(a,τ)g(τ)dτ

)
× 1

Γ(α−1)

(
tρ1 −aρ1

ρ1

)α−2
.
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Thus,

max
a6t6T

|δ 2
ρ1

u(t)|6 φp̄

(∫ T

a
K(a,τ)g(τ)dτ

)
1

Γ(α−1)

(
T ρ1 −aρ1

ρ1

)α−2
.

By multiplying both sides of the previous inequality by φ p̄

((
T ρ2−sρ2

T ρ2−aρ2

)σ−1
)

, we get

φ p̄

((
T ρ2 − sρ2

T ρ2 −aρ2

)σ−1
)

max
a6t6T

|δ 2
ρ1

u(t)|6 φ p̄

(∫ T

a

(
T ρ2 − sρ2

T ρ2 −aρ2

)σ−1
K(a,τ)g(τ)dτ

)
1

Γ(α−1)

(
T ρ1 −aρ1

ρ1

)α−2
,

using Lemma (10)-(iv), we get :

φ p̄

((
T ρ2 − sρ2

T ρ2 −aρ2

)σ−1
)

max
a6t6T

|δ 2
ρ1

u(t)|6 φ p̄

(∫ T

a
K(s,τ)g(τ)dτ

)
1

Γ(α−1)

(
T ρ1 −aρ1

ρ1

)α−2
.

(25)

We multiplying both sides by G(t,s) and integrate over [a,T ] w.r.t. s, we get

max
a6t6T

|δ 2
ρ1

u(t)|
∫ T

a
G(t,s)φ p̄

((
T ρ2 − sρ2

T ρ2 −aρ2

)σ−1
)

ds

6
1

Γ(α−1)

(
T ρ1 −aρ1

ρ1

)α−2 ∫ T

a
G(t,s)φp̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds,

6
1

Γ(α−1)

(
T ρ1 −aρ1

ρ1

)α−2 [∫ T

a
G(t,s)φ p̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds+

(
tρ1 −aρ1

ρ1−µρ1

)
λ(

tρ1 −aρ1

ρ1−µρ1

)
µ

∫ T

a
H(η ,s)φ p̄

(∫ T

a
K(s,τ)g(τ)dτ

)
ds+φp̄

(∫ T

a
K(a,τ)g(τ)dτ

)]
,

=:
1

Γ(α−1)

(
T ρ1 −aρ1

ρ1

)α−2
u(t),

6
1

Γ(α−1)

(
T ρ1 −aρ1

ρ1

)α−2
max

a6t6T
|u(t)|

Furthermore, for t ∈ [θ̄ ,θ ]∫ T

a
G(t,s)φp̄

((
T ρ2 − sρ2

T ρ2 −aρ2

)σ−1
)

ds >
(

tρ1 −aρ1

T ρ1 −aρ1

)α−1
Z(θ)

∫ T

a
G(T,s)ds,

max
a6t6T

|δ 2
ρ1

u(t)|
∫ T

a
G(t,s)φ p̄

((
T ρ2 − sρ2

T ρ2 −aρ2

)σ−1
)

ds >

(
tρ1 −aρ1

T ρ1 −aρ1

)α−1
Z(θ)

∫ T

a
G(T,s)ds max

a6t6T
|δ 2

ρ1
u(t)|, (26)

.
(5) From the equation in (24) and Remark 1 , one can see that

δ
2
ρ1

u(t)=− 1
Γ(α−1)

∫ t

a

(
sρ1 −aρ1

ρ1

)α−2
sρ1−1

φ p̄

(∫ T

a
K
(
(tρ1 +aρ1 − sρ1)

1
ρ1 ,τ

)
g(τ)dτ

)
ds.

(27)
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Then, from (27) and Lemma 4 we get

δ
3
ρ1

u(t)= δ
1
ρ1

(
δ

2
ρ1

u
)
(t)=− t1−ρ1

Γ(α−2)

∫ t

a

(
sρ1 −aρ1

ρ1

)α−3
sρ1−1

φp̄

(∫ T

a
K
(
(tρ1 +aρ1 − sρ1)

1
ρ1 ,τ

)′
g(τ)dτ

)
ds,

where

φp̄

(∫ T

a
K
(
(tρ1 +aρ1 − sρ1)

1
ρ1 ,τ

)
g(τ)dτ

)′
=
∫ T

a
K′t
(
(tρ1 +aρ1 − sρ1)

1
ρ1 ,τ

)
g(τ)dτ ×

(p̄−1)tρ1−1

(tρ1 +aρ1 − sρ1)
ρ1−1

ρ1

∣∣∣∣∫ T

a
K
(
(tρ1 +aρ1 − sρ1)

1
ρ1 ,τ

)
g(τ)dτ

∣∣∣∣p−2
. (28)

Thus,

| δ 3
ρ1

u(t) |= −1
Γ(α−2)

∫ t

a

(
sρ1 −aρ1

ρ1

)α−3
sρ1−1

∫ T

a
K′t
(
(tρ1 +aρ1 − sρ1)

1
ρ1 ,τ

)
g(τ)dτ ×

(p̄−1)

(tρ1 +aρ1 − sρ1)
ρ1−1

ρ1

∣∣∣∣∫ T

a
K
(
(tρ1 +aρ1 − sρ1)

1
ρ1 ,τ

)
g(τ)dτ

∣∣∣∣p−2
ds,

6
ρ2

(T ρ2 −aρ2)Γ(α−2)

∫ t

a

(
sρ1 −aρ1

ρ1

)α−3
sρ1−1 (tρ1 +aρ1 − sρ1)

ρ2−1
ρ1

∫ T

a
K (a,τ)g(τ)dτ ×

(p̄−1)

(tρ1 +aρ1 − sρ1)
ρ1−1

ρ1

∣∣∣∣∫ T

a
K(a,τ)g(τ)dτ

∣∣∣∣p−2
ds

= (p̄−1)φp̄

(∫ T

a
K(a,τ)g(τ)dτ

)
ρ2

(T ρ2 −aρ2)Γ(α−2)

∫ t

a

(
sρ1 −aρ1

ρ1

)α−3
sρ1−1 (tρ1 +aρ1 − sρ1)

ρ2−ρ1
ρ1 ds

6 (p̄−1)φp̄

(∫ T

a
K(a,τ)g(τ)dτ

)
ρ2

(T ρ2 −aρ2)Γ(α−2)
max

a6t6T

{∫ t

a

(
sρ1 −aρ1

ρ1

)α−3
sρ1−1 (tρ1 +aρ1 − sρ1)

ρ2−ρ1
ρ1 ds

}
,

Then,

max
a6t6T

|δ 3
ρ1

u(t)|6 (p̄−1)φ p̄

(∫ T

a
K(a,τ)g(τ)dτ

)
× ς . (29)

As in (2).
(6) From the inequalities (21), (23), (26) and (29) one can see that, equation(20) is a direct

consequence of the previous results.

Then, for selected [θ̄ ,θ ]⊂ (a,T ), we define the cone

P =

{
u ∈ E : min

t∈[θ̄ ,θ ]
u(t)>

(
θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−1

M‖u‖

}
,

and the integral operator Nλ : P → E defined for t ∈ [θ̄ ,θ ] by

Fλ (u)(t) =
∫ T

a
G(t,s)φ p̄

(∫ T

a
K(s,τ)c f (u(τ))dτ

)
ds

+µ

(
tρ1 −aρ1

ρ1−µρ1

)∫ T

a
H(η ,s) φ p̄

(∫ T

a
K(s,τ)c f (u(τ))dτ

)
ds

+

(
tρ1 −aρ1

ρ1−µρ1

)
λ +φ p̄

(∫ T

a
K(a,τ)c f (u(τ))dτ

)
. (30)
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We have Fλ (P) ⊂P and fixed points of Fλ are solutions of (1). To use some fixed point
Theorems, we need to show that Nλ is completely continuous.

Lemma 12 [1] Let h,s > 0. For any x,y ∈ [0,c], the following propositions hold.
1 If s > 1, then |xs− ys|6 shs−1|x− y|.
2 If 0 < s 6 1, then |xs− ys|6 |x− y|s.

Lemma 13 The integral operator Fλ : C → C is continuous and compact.

Proof.
The continuity of Fλ is a consequence of the continuity and positiveness of G,K,c and f .
To prove that Fλ is compact, let us consider a bounded subset Ω ⊂P . Then, there exists

L > 0 such that for any u ∈Ω we have

| f (u(t))|6 L.

For any u ∈Ω, as Fλ (u) is positive , continuous and G is increasing w.r.t. t, The maximum is at
the value t = T i.e.,

max
a6t6T

|Fλ (u(t)) |= Fλ (u(T )).

Consequently, from the above inequality, we get

max
a6t6T

|Fλ (u(t)) |≤φ p̄

(∫ T

a
K(a,τ)cLdτ

)
×
[∫ T

a
G(T,s)ds+µ

(
T ρ1 −aρ1

ρ1−µρ1

)∫ T

a
H(η ,s)ds+1

]
+λ

(
T ρ1 −aρ1

ρ1−µρ1

)
.
= L̄. (31)

Then, as in Lemma (11), we obtain
‖Fλ u‖6 N L̄,

where N= 4max

{
1, α−1

α−2
(

ρ1
T ρ1−aρ1

)
,max

{
1

Γ(α−1)

(
T ρ1−aρ1

ρ1

)α−2
,1
}
×
((

θ̄ ρ1−aρ1

T ρ1−aρ1

)α−1
Z(θ)

∫ T
a G(T,s)ds

)−1
}
.

Hence, Fλ (Ω) is uniformly bounded. Furthermore, by using Lemmas (9), (12), (10) and Le-
besgue dominated convergence theorem, we deduce the equicontinuouty of Fλ (Ω). Therefore,
Fλ is completely continuous by Arzela-Ascoli Theorem.

In order to avoid repetition in the remaining, we use the following notations.

f0 := lim
r→0+

f (r)
φp (r)

, f∞ = lim
r→∞

f (r)
φp (r)

.

γ :=
(

θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−1

M,

Λ1 :=
[(∫ T

a
G(T,s)ds+µ

(
T ρ1 −aρ1

ρ1−ρ1µ

)∫ T

a
H(η ,s)ds+1

)
×φp̄

(∫ T

a
K(a,τ)cdτ

)]−1
,

Λ2 :=
[

α−1
α−2

ρ1

T ρ1 −aρ1

(∫ T

a
G(T,s)ds+

µ

(1−µ)

∫ T

a
H(η ,s)ds

)
×φp̄

(∫ T

a
K(a,τ)cdτ

)]−1
,

Λ3 :=

[
1

Γ(α−1)

(
T ρ1 −aρ1

ρ1

)α−2
×φ p̄

(∫ T

a
K(a,τ)cdτ

)]−1

, Λ4 :=
[
((p̄−1)ςφp̄

(∫ T

a
K(a,τ)cdτ

)]−1
,

Λ5 :=

[
γ

(
θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−1

min
a≤s≤θ

(Z(s))
(∫ T

a
G(T,s)+µ

(
T ρ1 −aρ1

ρ1−µρ1

)
H(η ,s)ds

)
×φp̄

(∫ T

a
K(a,τ)cdτ

)]−1

,
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4. STUDY THE EXISTENCE OF SOLUTIONS IN A CONE

In this section, we set some hypotheses to derive an interval for λ which ensures the exis-
tence of positive solutions of the BVP (1).

(H1) There exist R1 > 0 and m1 ∈ (0,min
{

Λ1
8 , Λ2

8 , Λ3
4 , Λ4

4

}
) such that

f (r)6 φp (m1R1) , ∀r ∈ [0,R1],

(H2) There exist R2 > 0 and m2 ∈ (Λ5,∞) such that

f (r)> φp (m2R2) , ∀r ∈ [γR2,R2],

(H3)

f0 = ω ′ ∈ [0,kp−1), k =
min

{
Λ1
8 , Λ2

8 , Λ3
4 , Λ4

4

}
4

(H4)

f∞ = ξ ∈ (

(
2Λ5

γ

)p−1
,∞).

Theorem 14 Assume that the conditions (H1)and (H2) hold, and 0 < R1 < R2. Then, the BVP
(1) has at least one positive solution for λ > 0 small enough.

Proof. Let P1 = {u ∈ E : ‖u‖ ≤ R1} and λ satisfying

0 < λ 6
(1−µ)R1

8
min

(
1,

ρ1

T ρ1 −aρ1

)
. (32)

Let u ∈ E ∩∂P1, i.e., ‖u‖= R1. From (H1) and (32), we have

max
a6t6T

|Fλ (u(t)) |= Fλ (u(T )) =
∫ T

a
G(T,s)φ p̄

(∫ T

a
K(s,τ)c f (u(τ))dτ

)
ds

+µ

(
T ρ1 −aρ1

ρ1−µρ1

)∫ T

a
H(η ,s) φ p̄

(∫ T

a
K(s,τ)c f (u(τ))dτ

)
ds

+

(
T ρ1 −aρ1

ρ1−µρ1

)
λ +φ p̄

(∫ T

a
K(a,τ)c f (u(τ))dτ

)
.

Then,

max
a6t6T

|Fλ (u(t)) |6
Λ1R1

8

[(∫ T

a
G(T,s)ds+µ

(
T ρ1 −aρ1

ρ1−ρ1

)∫ T

a
H(η ,s)ds+1

)
×φ p̄

(∫ T

a
K(a,τ)cdτ

)]
+

R1

8
.

Consequently,

max
a6t6T

|Fλ (u(t)) |6
R1

8
+

R1

8
=
‖u‖

4
.

Similarly, we obtain

3

∑
k=1

max
a6t6T

| δ k
ρ1

Fλ (u(t)) |6
3‖u‖

4
.
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Therefore, we conclude that

‖Fλ u‖6 ‖u‖, ∀u ∈ E ∩∂P1. (33)

On the other hand, we set P2 = {u ∈ E : ‖u‖6 R2}. Then, for any u ∈ E∩∂P2 by Lemma
(11) one has

R2 > min
τ∈[θ̄ ,θ ]

u(τ)> γR2.

Using hypothesis H2, we get

Fλ (u(T )) >

(
θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−1 [∫ T

a
G(T,s)φp̄

(∫ T

a
K(s,τ)c f (u(τ))dτ

)
ds+µ

(
T ρ1 −aρ1

ρ1−µρ1

)∫ T

a
H(η ,s)

φp̄

(∫ T

a
K(s,τ)c f (u(τ))dτ

)
ds+

(
T ρ1 −aρ1

ρ1−µρ1

)
λ +φ p̄

(∫ T

a
K(a,τ)c f (u(τ))dτ

)]
>

(
θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−1

m2R2γ Z(θ)
(∫ T

a
G(T,s)+µ

(
T ρ1 −aρ1

ρ1−µρ1

)
H(η ,s)ds

)
×φp̄

(∫ T

a
K(a,τ)cdτ

)
>

(
θ̄ ρ1 −aρ1

T ρ1 −aρ1

)α−1

Λ5R2γ Z(θ)
(∫ T

a
G(T,s)+µ

(
T ρ1 −aρ1

ρ1−µρ1

)
H(η ,s)ds

)
×φp̄

(∫ T

a
K(a,τ)cdτ

)
:= R2 = ‖u‖.

Which implies that
‖Fλ u‖> ‖u‖, for any u ∈ E ∩∂P2. (34)

Therfore, from (33), (34), R1 < R2 and by applying the first part of Theorem (6), we deduce
that, the operator Fλ has at least one fixed point u ∈ E ∩P2\P1, which is positive solution of
BVP (1).

Theorem 15 Assume that all conditions (H1), (H2) hold. Then, the BVP (1) has no positive
solution for λ large enough.

Proof. Fome Technical Contradiction, we get the desired result

Remark 2

If f0 = 0, f∞ = ∞. hold, then the condotions (H1) and (H2) hold respectively. Moreover, if the
function f is nondecreasing, the following theorem holds.

Theorem 16 Assume that the hypotheses of Theorem (14) hold and that f is nondecreasing.
Then, there exists λ ∗ > 0 such that the BVP (1) has at least one positive solution for λ ∈ (0,λ ∗)
and has no positive solution for λ ∈ (λ ∗,∞).

Proof.
Let Θ = {λ , the BVP (1) has at least one positive solution} ⊂ R∗+ and λ ∗ = supΘ. It fol-

lows from Theorem (14) that Θ 6= /0 and thus λ ∗ exists. We denote by u0 the solution of BVP (1)
associated to λ0 and

K (u0) = {u ∈ E : u(t)< u0(t),∀t ∈ [a,T ]} .
Let λ ∈ (0,λ0) and u ∈K (u0). It follows from the definition of Nλ (30) and the monotonicity
of f that for any t

Fλ (u(t))≤Fλ (u0(t)) = u0(t).

Thus, Fλ (K (u0)) ⊆K (u0). By Shaulder’s fixed point theorem we know that, there exists a
fixed point u ∈K (u0), which is a positive solution of (1). The proof is completed.
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Theorem 17 Suppose that f satisfies (H3) and (H4). Then, the BVP (1) has at least one positive
solution forfor λ > 0 small enough.

Proof. Firstly, from the definition of f0, for all ε > 0 there exists an adequate small positive
number δ̄ (ε) such that

f (r)6 (ε +ω ′)rp−1 6 (ε +ω ′)δ̄ (ε)p−1, ∀r ∈ [0, δ̄ (ε)].

Then, for ε = kp−1−ω ′ we have

f (r)6 kp−1
δ̄ (ε)p−1 6

(
2kδ̄ (ε)

)p−1
. (35)

It’s enough to take R1 = δ̄ (ε) and m1 = 2k ∈ (0,min
{

Λ1
8 , Λ2

8 , Λ3
4 , Λ4

4

}
), i.e., the conditions (H1)

holds.
Next, since f∞ = ξ ∈ (

(
2Λ5

γ

)p−1
,∞), then for every ε > 0, there exists an adequate big positive

number R2 6= R1 such that

f (r)> (ξ − ε)rp−1 > (ξ − ε)(γR2)
p−1 , ∀r > γR2.

Hence, for ε = ξ −
(

2Λ5
γ

)p−1
we get

f (r)>
(

2Λ5

γ

)p−1
(γR2)

p−1 = (2Λ5R2)
p−1 . (36)

Let m2 = 2Λ5 > Λ5, thus condition (H2) holds, by applying Theorem 14, we complete the proof.

5. AN APPLICATIONS

In this section, we give an example to illustrate the usefulness of our main results.

Example 1 Let us consider the following fractional BVP



C−HD
5
2

e2−

(
φp

(
C−HD

5
2

e1+ u
))

(t)+ 5
√

π

2
7
2

u
3
2 (t) = 0, e1 < t < e2,

u(e1)+C−HD
5
2

e1+ u(e1) = 0, δ 2
0+u(e1) = 0, δ 1

0+u(e2) = 1
2 δ 1

0+u(e
8
5 )+λ ,

C−HD
5
2

e1+ u(e2) = 0, −δ 1
0+

(
φp

(
C−HD

5
2

e1+ u
))

(e1) = 0, δ 2
0+

(
φp

(
C−HD

5
2

e1+ u
))

(e2) = 0.

(37)
Here

ρ1 = ρ2 = 0, α = σ = 5
2 , µ = 1

2
η = e

8
5 , p = 3

2 , p̄ = 3
θ = e

7
4 , θ̄ = e

3
2 ,c = 5

√
π

2
7
2
,

C−HD
5
2

e1+ and C−HD
5
2

e2− are the left and right-sided Caputo-Hadamard fractional derivatives.

We can easily show that f (u(t)) = u
3
2 (t) satisfy :

f0 = lim
u→0+

f (u)
φ 3

2
(u)

= lim
u→0+

u(t) = 0, f∞ = lim
u→∞

f (u)
φ 3

2
(u)

= lim
u→0+

u(t) = ∞.
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Then obviously,(∫ e2

e1
K(e1,τ)cdτ

)2

= 1, min
{

Λ1

8
,

Λ2

8
,

Λ3

4
,

Λ4

4

}
' 0.014589936, Λ5 ' 15.13154296.

So, all conditions of Theorem 14 hold, then we can choose R2 > R1 and for λ satisfies 0 < λ 6
1
32 R1, such that

P1 = {u ∈ E : ‖u‖< R1} ,P2 = {u ∈ E : ‖u‖< R2} .
Then, we can show that, the BVP (37) has at least one positive solution u ∈ E ∩ (P2 \P1) for
λ small enough.

6. CONCLUSION

In this words we have discussed the existence and the uniqueness of solutions for a class of
nonlinear fractional differential equations with a boundary value, by using the properties of the
Green functions associated to (1), the Guo-Krasnosel’skii and Banach fixed point theorems.
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