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ABSTRACT

The maximum of the conditional hazard function is a parameter of great importance in statistics
studies, because it constitutes the maximum risk of occurrence of an earthquake in a given in-
terval of time. Using the kernel nonparametric estimates of the first derivative of the conditional
hazard function, we establish a convergence properties of an estimate of the maximum in the
context of quasi-associated data.

1. INTRODUCTION

The estimation of the conditional density function and its derivatives, in statistics functional,
was introduced by Ferraty et al. (2006) . These authors obtained almost complete convergence
in the case i.i.d. Since this article, an abundant literature has developed on the estimation of the
conditional density and its derivatives, in particular in order to use it to estimate the conditional
mode. Indeed, considering a-mixing observations, Ferraty et al. (2005) established the almost
complete convergence of a kernel estimator of the conditional mode defined by the random va-
riable maximizing the conditional density. Alternatively, Ezzahrioui et al. (2005, 2006) estimated
the conditional mode by the point that cancels the derivative of the kernel density estimator.
The latter focused on the asymptotic normality of the estimator proposed in both cases (i.i.d.
and mixing). The accuracy of the dominant terms of the quadratic error of the kernel density
estimator has been obtained by Laksaci (2007). We refer to Laksaci et al. (2009) for the question
of the choice of the smoothing parameter in the estimation of conditional density to functional
explanatory variable.
The associated random variables play an important role in a wide variety of areas, including
reliability theory, mathematical physics, multivariate statistical analysis, life sciences and in per-
colation theory. Many works were treated data under positive and negative dependant random
variables, one can quote, Newman (1984), Matula (1992) and Roussas (1999).
The concept of quasi-association is a special case of weak dependence introduced by Doukhan
et al. (1999) for real-valued stochastic processes. It was applied by Bulinski et al. (2001) to
real valued random fields, and it provides a unified approach to studying families of both po-
sitively and negatively dependent random variables. To the best of our knowledge, there is few
papers dealing with the nonparametric estimation for quasi-associated random variables. We
quote, Douge (2010) studied a limit theorem for quasi-associated Hilbertian random variables,
Attaoui et al. (2015) studied Asymptotic Results for an M-Estimator of the Regression Function
for Quasi-Associated Processes, Tabti et al. (2016) studied Estimation and simulation of condi-
tional hazard function in the quasi-associated framework when the observations are linked via a
functional single-index structure, the asymptotic normality of this last estimator was studied by
Hamza et al. (2020).
In case of relative regression, Mechab and Laksaci (2016) studied the nonparametric estimate for
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associated random variables. Daoudi et al. (2019) studied the asymptotic normality of the non-
parametric conditional density function estimate with functional variables for quasi-associated
data and the asymptotic normality of the nonparametric conditional distribution function esti-
mate studied by Daoudi and Mechab (2019).
The main contribution of this work is the study of the asymptotic normality of the estimator of
the conditional hazard function in case of quasi-associated data. Note that, like all asymptotic
statistics nonfunctional parametric, our result is related to the phenomenon of concentration of
the probability measure of the explanatory variable and regularity of the functional space of the
model.

The paper is organized as follows : in the next section, we present our model. Section 3 is
dedicated to fixing notations and hypotheses. We state our main results in Section 4. An applica-
tion on simulated data is given to validate our theoretical result in Section 5. The auxiliary results
and proofs are given in Section 6. We finalize the paper with a conclusion in Section 7.

2. THE MODEL

We consider the random field Zi = (Xi,Yi), i ∈ NN with values in {F}×, where N ∈ N∗ and
({F},d) is a semi-metric space of possibly dimension infinite. In this context, (Xi)i∈NN can be
a functional random variable.

Note that since over ten years, the statistical community has concerned with the development
of models and methods adapted to these functional data situations. While the first studies in this
direction have mainly focused on linear models (see Bosq [?], Ramsay and Silverman [?]), recent
developments (see Ferraty and Vieu [?]) report models non-parametric suitable for this type of
data.
Subsequently, we fix a point x in {F} (respectively, a compact S ∈), we assume that the spatial
observations (Xi,Yi)i∈NN have the same distribution as Z := (X ,Y ) and that the regular version of
the probability conditional of Y knowing X = x exists and admits a density bounded with respect
to the Lebesgue measure on , noted f x. The functional parameter studied in this article, noted hx,
is defined, for any y ∈ such that Fx(y)< 1, by :

hx(y) =
f x(y)

1−Fx(y)
,

where Fx is the conditional distribution function of Y knowing X = x.
And on the other hand, we assume that the field functional randomness is observed on the set
In =

{
i = (i1, · · · , iN) ∈ NN , 1≤ ik ≤ nk, k = 1, · · · ,N}, n= (n1, · · · ,nN)∈NN and we estimate

the conditional distribution function by :

Fx(y) =
∑i∈In K(h−1

K d(x,Xi))H(h−1
H (y−Yi))

∑i∈In K(h−1
K d(x,Xi))

, ∀y ∈

where K is a kernel, H a distribution function and hK = hK,n (respectively, hH = hH,n) a
sequence of positive real numbers.
We deduce from Fx the density estimator conditional, denoted f x, defined by :

f x(y) =
h−1

H ∑i∈In K(h−1
K d(x,Xi))H ′(h

−1
H (y−Yi))

∑i∈In K(h−1
K d(x,Xi))

, ∀y ∈

where H ′ is the derivative of H. Note that, if N = 1, we obtains the same estimators from
Ferraty it et al. [?]. The natural estimator of the hazard function conditional, denoted ĥx, is :

ĥx(y) =
f̂ x(y)

1− F̂x(y)
. ∀y ∈ .
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Estimation of the high risk point : We will estimate the point at high risk in S, denoted by θ(x),
defined by

hx(θ(x)) = max
y∈S

hx(y). (1)

This model is of great interest in statistics, particularly in seismic risk analysis. In our func-
tional context, it is assumed that it exist a single point θ(x) in S verifying (??). The estimator
natural of θ(x), denoted by θ̂(x), is given by :

hx(θ̂(x)) =
x

max
y∈S

(y). (2)

Usually, this estimator is not unique. So, throughout the rest of this article θ̂(x) will denote
any random variable checking (??).
In order to study the almost complete convergence of the estimator θ̂(x) we keep the assumptions
of the previous section and we assume that the function hx is of class C2 with respect to y and
such that :

hx′(θ(x)) = 0 and hx′′(θ(x))< 0. (3)
Consider Zi = (Xi,Yi)1≤i≤n be a n quasi-associated random identically distributed as the random
Z = (X ,Y ), with values in H ×R, where H is a separable real Hilbert space with the norm ‖ . ‖
generated by an inner product < ., . >.
We consider the semi-metric d defined by ∀x,x′ ∈H /d(x,x′) =‖ x− x′ ‖. In the following x
will be a fixed point in H and Nx will denote a fixed neighborhood of x and S will be fixed
compact subset of R.
We intend to estimate conditional hazard hx(y) using n dependent observations (Xi,Yi)i∈N draw
from a random variables with the same distribution with Z := (X ,Y ).
To estimate the conditional distribution function and the conditional density we consider the
following functional kernel estimators :

F̂x(y) =
∑

n
i=1 K

(
h−1

K d (x,Xi)
)

H
(

h−1
H (y−Yi)

)
∑

n
i=1 K

(
h−1

K d (x,Xi)
) , ∀y ∈ R (4)

where K is the kernel, H is a given distribution function and hK = hK,n (resp. hH = hH,n
)

is a
sequence of positive real numbers which converges to 0 when n→ ∞. We put

Ki(x) = K
(

h−1
K d (x,Xi)

)
and Hi(y) = H

(
h−1

H (y−Yi)
)

we can write

F̂x(y) =
F̂N(y,x)
F̂D(x)

with

F̂N(y,x) =
1

nE [K1(x)]

n

∑
i=1

Ki(x)Hi(y)

and for

F̂D(x) =
1

nE [K1(x)]

n

∑
i=1

Ki(x)

We define the kernel estimator f̂ x(y) of f x(y) by :

f̂ x(y) =
h−1

H ∑
n
i=1 K

(
h−1

K d (x,Xi)
)

H ′
(

h−1
H (y−Yi)

)
∑

n
i=1 K

(
h−1

K d (x,Xi)
) , ∀y ∈ R (5)
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where H ′ is the derivative of H. We can write

f̂ x(y) =
f̂N(y,x)
F̂D(x)

where

f̂N(y,x) =
1

nhHE [K1(x)]

n

∑
i=1

Ki(x)H ′i (y)

Finally, the estimator of the conditional hazard function is ĥx(y) defined by

ĥx(y) =
f̂ x(y)

1− F̂x(y)
, ∀y ∈ R (6)

3. NOTATIONS AND HYPOTHESES

All along the paper, when no confusion will be possible, we will denote by C or/and C′ some
strictly positive generic constants whose values are allowed to change. The variable x is a fixed
point in H , Nx is a fixed neighborhood of x. We assume that the random pair Zi = {(Xi,Yi), i ∈
N} is stationary quasi-associated processes.
Let λk the covariance coefficient defined as :

λk = sups≥k ∑
|i− j|≥s

λi, j

where

λi, j =
∞

∑
k=1

∞

∑
l=1
| cov(Xk

i ,X
l
j) |+

∞

∑
k=1
| cov(Xk

i ,Y j) |+
∞

∑
l=1
| cov(Yi,X l

j) |+cov(Yi,Y j) | .

Xk
i denotes the kth component of Xi defined as Xk

i :=< Xi,ek >.
For hK > 0, let Bθ (x,hK) := {x′ ∈H /d(x′,x)< hK} be the ball of center x and radius hK .
Now, we will state the following assumptions that are necessary to show our main result :

(H1) P(X ∈ B(x,hK)) = φ(x,hK)> 0 and there exists a function β (x, .) such that :

∀ ∈ [0,1], lim
h→0

φ(x,shK)

φ(x,hK)
= β (x, .).

(H2) For l ∈ {0,2}, the functions Φl(s) = E[ ∂ l FX (y)
∂y′

− ∂ l Fx(y)
∂y′

| d(x,X) = s] are differen-
tiable at s = 0.

(H3) The conditional distribution Fx(y) satisfies the Hölder condition, that is : ∀(x1,x2) ∈
Nx×Nx, ∀(y1,y2) ∈S 2

|Fx1(y1)−Fx2(y2)| ≤C
(

db1(x1,x2)+ |y1− y2|b2
)
, b1 > 0, b2 > 0.

where S is a fixed compact subset of R.

(H4) H is a cumulative distribution and H ′ is bounded and lipschitzian function, such that∫
H ′(t)dt = 1,

∫
|t|b2 H ′(t)dt < ∞ and

∫
H
′2(t)dt < ∞.

(H5) K is a bounded, Lipschitzian and differentiable function such that : there exist two
constants C and C

′
with

CI[0,1](.)< K(.)<C
′
I[0,1](.)

where I[0,1] is the indicator function on [0,1], and its derivative K
′

is such that −∞ <C <

K
′
(t)<C

′
< 0 for 0≤ t ≤ 1.
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(H6) The bandwidths (hK ,hH) satisfied :

(i) lim
n→∞

hK = 0, lim
n→∞

hH = 0 and lim
n→∞

(
hb2

H +hb1
K

)√
nhHφ (x,hK) = 0

(H7) The sequence of random pairs (Xi,X j), i ∈ N is quasi-associated with covariance co-
efficient λk, k ∈ N satisfying :

∃α > 0,∃C > 0, such that λk ≤Ce−αk.

(H8) 0 < sup
i 6= j

P
[
(Xi,X j) ∈ B(x,hK)×B(x,hK)

]
= O

(
φ

2(x,hK)
)

.

4. MAIN RESULT

Theorem 1 Under the assumptions (H1)-(H7) and (??), we have,

|θ̂(x)−θ(x)|= O
(

hb1/2
K +hb2/2

H

)
+O

((
logn

nhHφx(hK)

) 1
4
)
, a.co.

Lemma 2 Under the assumptions (H1)-(H7), we have,

y∈§|ĥx(y)−hx(y)|= O
(

hb1
K +hb2

H

)
+O

((
logn

nhHφx(hK)

) 1
2
)
, a.co.

The proof of Lemma 4.2 is based on the following results :

Lemma 3 Under the condtins of theorem 4.1, we have,

sup
y∈S
| f x

N(y)−E f x
N(y)|= O

((
logn

nφx(hK)

) 1
2
)
. a.co.

sup
y∈S
|Fx

N(y)−EFx
N(y)|= O

((
logn

nφx(hK)

) 1
2
)
. a.co.

Lemma 4 Under the assumptions (H1) and (H4)-(H7), we have,

sup
y∈§
|Fx(y)−x

N (y)|= O
(

hb1
K +hb2

H

)
.

sup
y∈§
| f x(y)−x

N (y)|= O
(

hb3
K +hb4

H

)
.

Lemma 5 Under the assumptions (H1)-(H3), (H5) and (H7), we have,

x
D−x

D = O

((
logn

nφx(hK)

) 1
2
)
, a.co.

Lemma 6 Under the conditions of lemma 4.2, we have,

∃η > 0 such that
n

∑
i=1

P
{

inf
y∈§
|1− F̂x(y)|< η

}
< ∞.

Corollary 7 Under the assumptions of Lemma 4.2, we have,

∞

∑
i=1

P
(
|F̂x

D(y)|< 1/2
)
< ∞
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