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ABSTRACT

In this paper, we establish a new concentration inequality and complete convergence of weigh-
ted sums for arrays of rowwise linearly negative quadrant dependent (LNQD, in short) random
variables and obtain a result dealing with complete convergence of first-order autoregressive
processes with identically distributed LNQD innovations.
key words : Complete convergence ; Linearly Negative Quadrant Dependent Random Variables ;
Autoregressive Process.
MSC 2010 : 60F ; 60G.

1. INTRODUCTION

The concept of complete convergence of a sequence of random variables was introduced
by Hsu and Robbins [3] as follows. A sequence {Xn,n ≥ 1} of random variables converges
completely to the constant C if

∞

∑
n=1

P(|Xn−C|> ε)< ∞ for all ε > 0.

By the Borel-Cantelli lemma, this implies Xn→C almost surely (a.s.), and the converse implica-
tion is true if the {Xn,n≥ 1} are independent. Hsu and Robbins [4] proved that the sequence of
arithmetic means of independent and identically distributed (i.i.d.) random variables converges
completely to the expected value if the variance of the summands is finite. Erdös [1] proved
the converse. This result has been generalized and extended in several directions and carefully
studied by many authors (see, Gut[3], Kuczmaszewska and Szynal[10], Ghosal and Chandra[2],
Hu et al.[5, 6]). Complete convergence for sequence of random variables plays a central role in
the area of limit theorems in probability theory and mathematical statistics. Conditions of inde-
pendence and identical distribution of random variables are basic in historic results due to Ber-
noulli, Borel and Kolmogorov. Since then, serious attempts have been made to relax these strong
conditions. For example, independence has been relaxed to pairwise independence or pairwise
negative quadrant dependence or, even replaced by conditions of dependence such as mixing or
martingale. In particular, many authors showed that many results could be obtained by replacing
i.i.d. condition by uniformly bounded condition. We recall that an array {Xni,1 ≤ i ≤ n,n ≥ 1}
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of random variables is said to be stochastically dominated by a nonnegative random variable X
(write {Xni ≺ X}) if there exists a constant C > 0 such that

P(|Xni|> t)≤CP(X > t) ∀ t > 0 , n≥ 1, 1≤ i≤ n. (1)

The main purpose of this paper, is to discuss the complete convergence for sums of row-
wise linearly negative quadrant dependent (LNQD, in short) random variables under suitable
conditions, since independent and identically random variables are a special case of linearly
negative quadrant dependent random variables. The exponential inequality plays an important
role in various proofs of limit theorems. In particular, it provides a measure of the complete
convergence for partial sums. The exponential inequality for negatively associated (NA, in short)
random variables has been studied by many authors ; see, for example, [5,7,10], and so forth.
The main purpose of this work is to extend the exponential inequality for NA random variables
to the case of LNQD random variables. In addition, we obtain the complete convergence for

Sn =
n

∑
i=1

Xi, which improves on the corresponding ones of [4-6]. Lehmann [11] introduced a

simple and natural definition of negative dependence : A sequence {ζi,1 ≤ i ≤ n} of random
variables is said to be pairwise negative quadrant dependent (pairwise NQD) if for any real
εi,ε j and i 6= j,P(ζi > εi,ζ j > ε j) ≤ P(ζi > εi)P(ζ j > ε j) : Much stronger concept than NQD
was considered by Joag-Dev and Proschan [7] : A sequence {ζi,1≤ i≤ n} is said to be negati-
vely associated(NA) if for any disjoint subsets, A,B ⊂ {1,2, ...,n} and any real coordinatewise
increasing functions f on RA and g on RB, Cov( f (ζi, i∈ A),g(ζi, i∈ B))≤ 0. Instead of negative
association, Newman [12] noticed that his method of proof yielding the central limit theorem
for negatively associated sequence requires only that positive linear combinations of the random
variables are NQD, i.e., the random variables are linearly negative quadrant dependent (LNQD).
This notion of negative dependence was formulated by Newman [12] as follows : {ζi, i ∈ N} is
a sequence of LNQD random variables if for any disjoint subsets A, B of N and positive ri, the
random vector (∑

i∈A
riζi; ∑

i∈B
riζi) is NQD. Negatively associated sequences are LNQD and LNQD

sequences are not necessarily NA, as it can be seen from examples in Newman [12] or Joag-Dev
[7].
We note also that negative association and its weaker concepts are of considerable use in proba-
bility and statistics (cf. Joag-Dev and Proschan [7], Newman [12] and the references there in).
Newmann [12] was first to establish a central limit theorem for LNQD random variables, Kim et
al.[9] derived a general central limit theorem for weighted sum of LNQD random variables.
Firstly, we will recall the definitions of negatively associated, negative quadrant dependent and
linearly negative quadrant dependent sequence.

Definition 1 [11] Two random variables ζ1 and ζ2 are said to be negative quadrant dependent
(NQD, in short) if for any ε1,ε2 ∈ R,

P(ζ1 < ε1,ζ2 < ε2)≤ P(ζ1 < ε1)P(ζ2 < ε2). (2)

A sequence {ζn,n ≥ 1} of random variables is said to be pairwise NQD if ζi and ζ j are NQD
for all i, j ∈ N+ and i 6= j.

Definition 2 [12] A sequence {ζn,n ≥ 1} of random variables is said to be linearly negative
quadrant dependent (LNQD, in short) if for any disjoint subsets A,B⊂ and positive r

′
js,

∑
k∈A

rkζk and ∑
j∈B

r jζ j are NQD.

Remark 1 It is easily seen that if {ζn,n ≥ 1} is a sequence of LNQD random variables, then
{aζn +b,n≥ 1} is still a sequence of LNQD random variables, where a and b are real numbers.
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Lemma 1 [11] Let random variables X and Y be NQD. Then
(i) E(XY )≤ E(X)E(Y ) ;
(ii) P(X > x,Y > y)≤ P(X > x)P(Y > y) ;
(iii) If f and g are both nondecreasing (or both nonincreasing) functions, then f (X) and g(Y )
are NQD.

Lemma 2 Let {Xn,n ≥ 1} be a sequence of LNQD random variables and t > 0, then for each
n≥ 1,

E

[
n

∏
i=1

exp(tXi)

]
≤

n

∏
i=1

E(exp(tXi)) (3)

Proof. For t > 0, it is easy to see that tXi and t
n

∑
j=i+1

X j are NQD by the definition of LNQD,

which implies that exp(tXi) and exp(t
n

∑
j=i+1

X j) are also NQD for i= 1,2, ...,n−1 by Lemma??(iii).

It follows from Lemma??(i) and induction that

E

[
n

∏
i=1

exp(tXi)

]
= E

[
exp(tX1)exp

(
n

∑
i=2

tXi

)]

≤ E [exp(tX1)]E

[
exp

(
n

∑
i=2

tXi

)]

= E [exp(tX1)]E

[
exp(tX2)exp

(
n

∑
i=3

tXi

)]

≤ E [exp(tX1)]E [exp(tX2)]E

[
exp

(
n

∑
i=3

tXi

)]

≤
n

∏
i=1

E(exp(tXi)).

This completes the proof of the lemma.
Throughout the paper, let {Xni,1 ≤ i ≤ n,n ≥ 1} be a sequence of random variables defined on

a fixed probability space (Ω,F ,P). Denote Sn =
n

∑
i=1

Xni and Bn =
n

∑
i=1

E(X2
ni) for each 1≤ i≤ n

and n≥ 1.

2. MAIN RESULTS

Lemma 3 Let α > 0 constants and 0 < β ≤ α2

eα −1−α
. Then

exp(x)−1− x≤ x2

β
(4)

for all 0≤ x≤ α

Proof.Consider the function

Ψ(x,β ) = ln(1+ x+
x2

β
)− x.

ICMA2021-3



Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

We need to prove that Ψ(x,β )≥ 0 for all

0 < β ≤ α2

eα −1−α
and 0≤ x≤ α .

Take the derivative
∂Ψ(x,β )

∂x
=−x(x− (2−β ))

β (1+ x+
x2

β
)

.

Hence, Ψ is increasing in x on the interval (0,2−β ) and decreasing on the interval

(2−β ,α). Note that Ψ(0,β ) = 0 and Ψ(α,β )≥ 0 since 0 < β ≤ α2

eα −1−α
Let

X1,ni =−an1{Xni<−an}+Xni1{|Xni|≤an}+an1{Xni>an},

X2,ni = (Xni−an)1{Xni>an}, (5)

X3,ni = (Xni +an)1{Xni<−an}. (6)

Here, and in the sequel, 1A denotes the indicator function of the A set in the braces, that is, it
takes value 1 or 0 according to whether or not the sample point belongs to the set.
It is easy to check that X1,ni +X2,ni +X3,ni = Xni for 1≤ i≤ n,n≥ 1 and X1,n1,X1,n2, ...,X1,nn are
bounded by an for each fixed n≥ 1.
If {Xni,n ≥ 1} are LNQD random variables, then {Xp,ni,1 ≤ i ≤ n}, p = 1,2,3 are also LNQD
random variables for each fixed n≥ 1.

Theorem 4 Let {Xn,n ≥ 1} be a sequence of LNQD random variables with EXi = 0. If there
exists a positive constants α,λ such that 0≤ Xi ≤ α

λ
, i≥ 1 then for any λ ≥ 0,

Eexp

{
λ

n

∑
i=1

Xi

}
≤ exp

{
λ 2

β

n

∑
i=1

EX2
i

}
(7)

Proof. By using Lemma 3 and Lemma 2, we can see that

Eexp

{
λ

n

∑
i=1

Xi

}
≤

n

∏
i=1

EeλXi ≤ exp

{
λ 2

β

n

∑
i=1

EX2
i

}
(8)

Corollary 5 Let {Xn,n≥ 1} be a sequence of LNQD random variables. If there exists a positive
constants α,λ such that
0≤ Xi ≤ α

λ
, i≥ 1 then for any λ ≥ 0,

Eexp

{
λ

n

∑
i=1

(Xi−EXi)

}
≤ exp

{
λ 2

β

n

∑
i=1

EX2
i

}
(9)

Proof. It is easily seen that {Xn−EXn,n≥ 1} is a sequence of LNQD random variables with
E(Xi−EXi) = 0. By Theorem 4, we have

Eexp

{
λ

n

∑
i=1

(Xi−EXi)

}
≤ exp

{
λ 2

β

n

∑
i=1

E(Xi−EXi)
2

}

≤ exp

{
λ 2

β

n

∑
i=1

EX2
i

}
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Theorem 6 Let {Xn,n≥ 1} be a sequence of LNQD random variables such that 0≤ Xi ≤ α

λ
, i≥

1 where α and λ a positive constants. Then for any ε ≥ 0 we have

P

(
n

∑
i=1

(Xi−EXi)≥ ε

)
≤ exp

{
− ε2β

4Bn

}
(10)

Proof. By Markov’s inequality and lemma 3, we have that for any λ > 0.

P

(
n

∑
i=1

(Xi−EXi)≥ ε

)
≤ e−λεEexp

{
n

∑
i=1

(Xi−EXi)

}

≤ exp
{
−λε +

λ 2

β
B2

n

}

Taking λ = εβ

2Bn
, we can obtain 10

P

(
n

∑
i=1

(Xi−EXi)≤−ε

)
≤ P

(
n

∑
i=1

(−Xi−E(−Xi)

)
≥ ε)

≤ exp
{
− ε2β

4Bn

}
(11)

since {−Xn,n≤ 1} is a sequence of LNQD random variables.

Theorem 7 Let {Xni,1 ≤ i ≤ n,n ≥ 1} be an array of rowwise LNQD random variables with
EXni = 0, and {an,n≥ 1} a sequence of positive constants. Suppose that

(i)
∞

∑
n=1

exp{−βε2

4an
}< ∞ for some 0 < β ≤ α2

eα −1−α
and |Xni| ≤ α .

(ii)
n

∑
i=1

E(X2
ni) = O(an),

Then
n

∑
i=1

Xni converges completely to zero.

Proof. From the inequality exp(x) ≤ 1+ x+
x2

β
for all 0 ≤ x ≤ α and 0 < β ≤ α2

eα −1−α

(see lemma 3), we have by (i) that for any λ > 0

Eexp(λXni) ≤ E
{

1+λXni +
1

2β
λ

2|Xni|2
}

= 1+
1

2β
λ

2E|Xni|2

≤ exp
{

1
2β

λ
2E|Xni|2

}

The second inequality follows by the fact that 1+ t ≤ et for all real number t. It follows by
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Markov’s inequality, Lemma 2, and (i) that for any λ > 0,

P

(
n

∑
i=1

Xni > ε

)
≤ e−λεEexp(λ

n

∑
i=1

Xni)

≤ e−λε
n

∏
i=1

Eexp(λXni)

≤ e−λε exp

{
1

2β
λ

2
n

∑
i=1

E|Xni|2
}

≤ e−λε exp
{

1
2β

λ
2O(an)

}
= exp

{
−λε +

1
2β

λ
2O(an)

}
.

Choosing λ =
εβ

2O(an)
, we have that for all large n,

P

(
n

∑
i=1

Xni > ε

)
≤ exp

{
−ε

2 β

2
O(an)+

ε2β 2O(an)

4β (O(an))2

}
= exp

{
−ε

2 β

4O(an)

}
≤ exp

{
−ε

2 β

4an

}
.

Thus by (i)
∞

∑
n=1

P

(
n

∑
i=1

Xni > ε

)
< ∞. (12)

Since {−Xni,1 ≤ i ≤ n,n ≥ 1} is still an array of row-wise LNQD random variables, we can
replace Xni by −Xni from the above statement. That is,

∞

∑
n=1

P

(
n

∑
i=1

Xni <−ε

)
< ∞. (13)

The result follows by (12) and (13).
Now we state and prove our main result.

3. APPLICATIONS OF THE RESULTS TO AR(1) MODEL

The basic object of this section is applying the results to first-order autoregressive pro-
cesses(AR(1)).

3.1. The AR(1) model

We consider an autoregressive time series of first order AR(1) defined by

Xn+1 = θXn +ζn+1, n = 1,2, ..., (14)
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where {ζn,n ≥ 0} is a sequence of identically distributed LNQD random variables with ζ0 =
X0 = 0, 0 < Eζ 4

k < ∞, k = 1,2, ... and where θ is a parameter with |θ |< 1. Here, we can rewrite
Xn+1 in (14) as follows :

Xn+1 = θ
n+1X0 +θ

n
ζ1 +θ

n−1
ζ2 + ...+ζn+1. (15)

The coefficient θ is fitted least squares, giving the estimator

θ̂n =

n

∑
j=1

X jX j−1

n

∑
j=1

X2
j−1

(16)

It immediately follows from (14) and (16) that

θ̂n−θ =

n

∑
j=1

ζ jX j−1

n

∑
j=1

X2
j−1

(17)

Theorem 8 Let the conditions of theorem (3) be satisfied then for any (EX2
1 )

1
2

R < ζ positive, with

take Bn =
n

∑
i=1

EX2
i , we have

P(
√

n|θ̂n−θ |> R)≤[
exp{−n2(R2ζ 2−EX1)

4Bn
}+ exp{−

EX2
j−1−nζ 2

4EX4
j−1

}

]
(18)

where EX2
j ≤ ∞ and EX4

j ≤ ∞.

Proof.
Firstly, we notice that :

θ̂n−θ =

n

∑
j=1

ζ jX j−1

n

∑
j=1

X2
j−1

It follows that

P(
√

n|θ̂n−θ |> R) = P


∣∣∣∣∣∣∣∣∣
1/
√

n
n

∑
j=1

ζ jX j−1

1/n
n

∑
j=1

X2
j−1

∣∣∣∣∣∣∣∣∣> R


By virtue of the probability properties and Hölder’s inequality, we have for any ε̃ positive

P(
√

n|θ̂n−θ |> R) ≤ P(1/n
n

∑
j=1

X j ≥ R2
ζ

2)+P(1/n2
n

∑
j=1

X2
j−1 ≤ R2)

= P(
n

∑
j=1

X j ≥ (R2
ζ

2)n)+P(
n

∑
j=1

X2
j−1 ≤ n2

ζ
2)

= I1n + I2n.
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Next we estimate I1n and I2n.

Corollary 9 The sequence (θ̂n)n∈N defined in (16) completely converges to the parameter θ of
the first-order autoregressive process.

4. CONCLUSIONS

The exponential probability inequalities have been important tools in probability and sta-
tistics. In this paper, we prove an new exponential inequalities for the distributions of sums of
linearly negative quadrant dependent (LNQD, in short) random variables, and obtain a result
dealing with complete convergence of first-order autoregressive processes with identically dis-
tributed (LNQD) innovations.
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