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Algeria

3 University Algiers 3, FSCESG, Algiers, Algeria

Abstract. The objective of this work is to analyse the ability of a spatial moment
model (SMM) to approximate an individual-based model (IBM) dedicated to the
study of the aggregation phenomenon in a mobile phytoplankton population. The
dynamic system of spatial moments is a system of integro-differential equations
derived from a phytoplankton IBM. The later is built on the basis of stochastic
processes describing the dynamics of phytoplankton cells and their interactions.
These processes are the movement of cells which takes into account the random
dispersion of cells in water and the attraction between cells due to their chemosen-
sory abilities, and the branching process (cell division or cell death) in which the
effect of local competition for nutrient resources on the cells division process is
taken into account through the use of density dependent division rate.
We solve numerically the SMM and then simulate the two models (IBM and
SMM) for to analyze the aggregation in the population. The numerical results
have led to the conclusion that in contrast to the meanfield model (MFM), the
method of spatial moments is efficient to capture the dynamics of the IBM. Fur-
ther, the SMM easily permits the prediction of long term behavior of phytoplank-
ton cells and their spatial structure.
Regardless of competition intensity, in the long term the population tends to be
stable with formation of aggregates, as a result of the equilibrium between differ-
ent mechanisms, including reproduction, competition, diffusion and cells attrac-
tions due to chemosensory abilities.

Keywords: Individual-based model · Spatial moment dynamics · Integro-differential
equations system · Numerical method and simulation · spatial and temporel dis-
cretization · Phytoplankton aggregation.

1 Introduction

Individual-based models (IBM), are simulation models that treat individuals as unique,
discrete entities [14], taking into account all the particularities and details judged essen-
tial to these entities. Thus, these models permit to describe, at the microscopic level, the
behaviours of individuals and their interactions, in order to observe the global evolution
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of the system. However, given the details contained in these IBM, the latter can be very
complex, computationally intensive and, moreover costly in time and memory during
their simulation. Simpler models than IBM exist, they are called Eulerian (aggregate)
models or mean-field models. These models, in contrast with the IBM, represent a sys-
tem as a whole, at the macroscopic level, assuming the behavioural and environmental
homogeneity of the studied populations. Therefore, as soon as there is heterogeneity
in the spatial structure (aggregations or concentrations in space), these models become
inappropriate.

A new approach considered the middle ground between oversimplified mean-field
models and highly complex computer simulation models, has been recently developed.
It is called the spatial moments method or moment closure method [3, 4, 7, 17, 19–22].
This method represents a good tool to reduce the complexity of an IBM, it allows to
build deterministic models, by approximating the dynamics of an IBM with a mathe-
matical model, aggregated and simpler, taking into account the main individuals char-
acteristics and their spatial structure and capturing the effects of interactions and move-
ments of individuals at the local level and in small neighborhoods. So, moment approx-
imation helps to minimize computation time and facilitates understanding of events.

This paper aims to present a new application of the spatial moments method in a
marine ecological system. Further, we attempt to assess the capacity of this method in
approximating individual-based models through the study of the aggregation behavior
in a phytoplankton population.

Phytoplankton includes all the unicellular microalgae living in suspension in the
water, most often in the form of a ”patch”, due to their aggregative nature which al-
lows them to aggregate and stick together to form relatively large particles. This is
due to their aggregative nature which allows them to aggregate and stick together to
form relatively large particles called aggregates. Small-scale biological studies have
shown the existence of interactions and biological responses between phytoplankton
cells. In fact, some mobile phytoplankton species, such as algae and dinoflagellates,
possess chemosensory abilities that allow them to sense the presence of other phyto-
plankton cells if they are in their vicinity. Indeed, these phytoplanktonic species, after
the completion of photosynthesis, evacuate organic matter into the water. The extracel-
lular products such as amino acids and sugars create a highly concentrated zone around
the phytoplankton cell called the phycosphere. [2, 15]. This zone, with a very high con-
centration of excreted products, extends over several diameters of the surface of the cell
and creates a chemical field around it that has an attractive effect on the algal cells and
bacteria situated in its immediate vicinity.

So, for a good description of phytoplankton population dynamics and a better un-
derstanding of the interactions and mechanisms that govern it, it is utile to pass from
the population scale to the individual scale (individual-based modelling).

The goal of our work is to analyse at the long-term the spatial structure of a phy-
toplankton population using moment approximation method of an individual-based
model. We first develop an IBM (at the microscopic scale) describing the stochastic
processes of birth, death and movement of phytoplankton cells. This IBM extends El
Saadi’s IBM model [9–12] through the introduction of the local competition on re-
sources in the division process, where we consider that the rate of division of each cell
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depends on the local density of the individuals surrounding it [8]. Also, the model takes
into account interactions between phytoplankton cells due to their chemosensory abili-
ties in the movement process. We then approximate the obtained IBM using the spatial
moment method (at the mesoscopic scale), and determine the dynamic equations of the
first spatial moment (which is the average density of individuals in the system) and the
second spatial moment (which is the average density of pairs of individuals providing
information on the spatial structure of the population). After solving numerically the
spatial moment model (SMM), we simulate both the IBM and SMM, in order to com-
pare their results and to see if the spatial moment dynamic equations are really efficient
to approximate the IBM model, and whether it can predict the long-term behavior of
phytoplankton cells and their spatial structure.

2 Individual-Based Model

We describe an individual based model (IBM) for a population of mobile phytoplankton
undergoing movement and branching (cell birth and death).

Let us consider a finite population of phytoplankton cells, randomly distributed in a
two dimensional and continuous space L × L. The phytoplankton cells are considered
as points of particles represented by their localizations x. At time t, each cell i is lo-
cated at coordinate xi(t) = (xi1(t), xi2(t)), i = 1, ..., n(t), where n(t) is the number
of phytoplankton cells at time t and the vector

(
x1(t), ..., xn(t)(t)

)
defines the spatial

structure p(x, t) at that time t, which changes through the occurrence of the stochastic
processes of movement, division and death.

- The motion process

The spatial movement of the cells in the space depends on their positions. For a given
cell i located in xi(t), at time t, its displacement is defined by the following stochastic
differential equation [1, 9–12]:

dx
i
(t) =

n(t)∑
j=1,j 6=i

α F (xi(t)− xj(t))dt+
√

2Df dBi(t) i = 1, ..., n(t) (1)

The first term on the right represents the pair interactions between the cell i and the
other cells of the system, the second term represents the random force acting on the
particle i, which is the diffusion of this cell in water, where Df represents the diffusion
coefficient of a cell in the water and (Bi(t))t is a standard Wiener process with values in

IR2.
n(t)∑

j=1,j 6=i

α F (xi(t)−xj(t)) measures the influence of all the other cells in the system

located in xj(t) on the cell i located in xi(t) due to their chemosensory capacities (we
consider in the following xi(t) = xi and xj(t) = xj). Indeed, after the completion of
photosynthesis, the extracellular products released by a phytoplankton cells at a position
xi, form a concentration field around it on a radius of length r0 (r0 � 0). This field
attracts all the cells that are at positions xj , such that the distance ‖ xi−xj ‖ is between
r0 and r1, where r1 represents the maximum distance beyond which individuals are
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unable to detect their congeners, with (r1 � r0) and r0, r1 are the non-negative reals
that delimit the sensitivity interval in phytoplankton cells. For any pair of cells located in
xi and xj , the interaction is defined by: αF (xi−xj), with α the mass of a phytoplankton
cell and F (xi − xj) is a kernel of attraction:

F (xi − xj) = − (xi − xj)
‖ xi − xj ‖

[
− ‖ xi − xj ‖2 +(r0 + r1) ‖ xi − xj ‖ −r0r1

]
× 1]r0,r1[(‖ xi − xj ‖).

F (xi − xj): represents a force that attracts the cell located in xi to the one being in xj ,
is a function of distance ‖ xi − xj ‖, of magnitude[
− ‖ xi − xj ‖2 +(r0 + r1) ‖ xi − xj ‖ −r0r1

]
1]r0,r1[(‖ xi−xj ‖), which increases

in the interval ]r0, r1[, peaked in ( r0+r12 ) and then decreases to 0 in r1. Its direction
vector is − (xi−xj)

‖xi−xj‖ . Moreover, F is an odd function and symmetrical, so that, if the
individual in xi is attracted by the individual in xj , then the individual in xj is also
attracted by the individual xi [9].

As we attempt in the next step to approximate the IBM and pass to the macroscopic
scale, then from the motion equation in (Eq. 1) given at the microscopic scale with the
assumption that the population size n(t) is finite, we deduce the probability of motion
of a cell located in xi in space to another location x, in case the population size be-
comes infinite (macroscopic scale). This transition probability will be expressed by the
probability density function m(x− xi) such that:

m(x−xi) =
1

4πDf4t
exp

{
− 1

4Df4t

∣∣∣∣∣∣∣∣x− xi − ∫ αF (xi − xj)4tdxj
∣∣∣∣∣∣∣∣2
}

x, xi, xj ∈ L2

(2)
where m(x − xi) is a gaussian motility kernel. (Eq. 2) is obtained from (Eq. 1). 4t
is the time step and the term

∫
α F (xi − xj) 4t dxj measures the effect of all cells

of the system located in xj on the cell i located in xi, following their chemosensory
capabilities. |m| represents the total probability of movements’ cell i [8], and measuring
the set of possible displacements of the cell , such that |m| =

∫
m (ξ) dξ with ξ =

x− xi 6= 0.

- The birth process

A phytoplankton cell i located at xi = (xi1, xi2) has the probability (per unit of time)
B(xi) of producing a newborn at the same place where it is. This probability is defined
by:

B(xi) = b1 − b2 dloc(xi) (3)

where b1 and b2 are the density-independent and the density dependent division
rates respectively. The term b2 dloc(xi) modifies the division rate, following the hy-
pothesis of existence of competition between phytoplankton cells for nutrient resources
[8, 17]. dloc(xi) is the local density of individuals in xi, the term b2 dloc(xi) measures
the effect of all nearby individuals, surrounding the xi cell and causing a diminution
in the division rate. So, increasing the local density of phytoplankton cells reduces the
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food level and consequently decreases the reproduction rate of this population. The
local density dloc(xi) is defined by:

dloc(xi) =

∫
w(xj − xi) [p(xj , t)− δxi

(xj)] dxj (4)

with

w(xj − xi) =
1

q
exp

{
−‖xj − xi‖

2

2s2w

}
& p(xj , t) =

n(t)∑
k=1

δxj (xk)

w(xj − xi) represents the competition kernel, which measures the contribution of in-
dividuals j located at xj in the local density perceived by an individual located in xi.
This kernel is a function of the distance, is Gaussian, symmetric and normalized to 1,
such that

∫
w(ξ)dξ = 1. This type of kernel has been chosen to give greater weight to

the nearest neighbors. sw is the width of competition kernel and 1/q the normalization
constant. p(xj , t) is the local density of individuals in xj and δxi

(xj) is the Dirac delta
function, to remove the effect of individual located in xi for the calculation of p(xj , t),
because it can’t compete with itself [8, 17].

- The death process

The probability (per unit time) that the cell located in xi = (xi1, xi2) dies, is constant
and is given by :

D(xi) = d (5)

3 Spatial Moment Model

Dynamic systems of spatial moments are constructed from stochastic processes of birth,
death and movement of individuals [4, 8, 17, 20]. The moment-based approximation
helps to understand the phenomena by describing the spatial structure through statis-
tics that summarise its main characteristics and describe the population dynamics. For
a spatial structure p(x, t) at time t, these statistics are: the first spatial moment N(t)
which corresponds to the average density of individuals over the whole space (L× L),
the second spatial moment C(ξ, t) defined as the average density of pairs of individ-
uals separated by a distance ξ and which provides information on how the individuals
are distributed in the L×L space, and the third spatial moment T(ξ, ξ′, t) considered
as a closure moment and which corresponds to the density of triplets formed by the first
pair of individuals separated by a vector distance ξ and a third individual separated from
the first pair by a vector distance ξ′.

During the realisations of stochastic processes in our presented IBM, spatial mo-
ments take new values each time the spatial structure changes. Thus, on average the
first two moments will change over time according to the following differential equa-
tions:

- The dynamics of the first moment is given by:
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dN(t)

dt
= (b1 − d)N(t)− b2

∫
w(ξ)C(ξ, t)dξ (6)

The term (b1−d)N(t) corresponds to the population growth resulting from the com-
ponents of independent neighborhood division and death. The second term b2

∫
w(ξ)C(ξ, t)dξ

represents the neighborhood-dependent division component and measures the negative
effect that the local environment may have on reproduction and population growth as
a consequence of competition on resources between individuals. If we put C(ξ, t) =
N2(t) in , then the spatial heterogeneity is eliminated and we obtain the Lotka Volterra
dynamics of the mean-field theory:

dN(t)

dt
= (b1 − d)N(t)− b2N2(t) (7)

- The dynamics of the second spatial moment is given by:

dC(ξ, t)

dt
=

(
dC(ξ, t)

dt

)
Division

+

(
dC(ξ, t)

dt

)
Death

+

(
dC(ξ, t)

dt

)
Movement

The spatial structure of pairs of cells, separated with a vectorial distance ξ, changes
through the division, death and movement stochastic processes. Hence, the dynamics of
the spatial second moment, take into account all the events that can affect individuals
of a pair:

dC(ξ, t)

dt
=

Birth


2b1C(ξ, t)− 2b2w(ξ)C(ξ, t)
−b2

∫
w(ξ′)T (ξ, ξ′, t) dξ′

−b2
∫
w(ξ′)T (−ξ, ξ′, t) dξ′

+b21C(ξ, t)− b22w2(ξ)C(ξ, t)
−b22

∫
w(ξ′)w(ξ′ − ξ)T (ξ′, ξ′ − ξ, t) dξ′

+

Death
{
−2dC(ξ, t)− d2C(ξ, t)

+

Movement

{
−2 |m| C(ξ, t) + 2

∫
m(ξ′)C(ξ + ξ′, t) dξ′

+
∫
m(ξ′)m(−ξ′′)C(ξ + ξ′ − ξ′′, t) dξ′ dξ′′ (8)

The terms to the right of the equation (Eq. 8), count the new pairs of individuals
separated by a distance ξ which will be created: either by cell movement, or by repro-
duction cell of one of the two phytoplankton cells composing a given existing pair or
by the simultaneous reproduction of the two cells which compose it, while taking into
account the negative effect of competition caused by all neighboring individuals and
reducing the cell reproduction of individuals forming a pair as well as the loss of pairs
separated by a distance ξ due to movement or the death of one of the individuals or of
the two individuals composing these pairs (for more details, see [5]).
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We note that in the dynamic system of spatial moments composed by equations (eq.
6) and (eq. 8), that the dynamics of each spatial moment depends on the higher order
moment. To avoid these dependencies and to close the system, we will express the third
spatial moment in terms of the first and second spatial moments. This expression is
called the closure moment [8, 20].

4 Numerical methods and simulations

We simulate the IBM using the Gillespie algorithm [13], which is a procedure for nu-
merical simulation of the temporal evolution of the stochastic system, allowing to spec-
ify when the next event will occur, which events will be and who is the individual
concerned by this event (for more details, see [5]).

For the analysis of the IBM results and their comparison with those of the spatial
moment model, it is necessary to calculate the first spatial moment and the Clark &
Evans index after each realization of the individual-based model.

– The first spatial moment N(t) which represents the average density of the individ-
uals, is obtained by dividing the total number of cells n(t) within a population at
the time t by the area of the domain |L|2 (with |L| the domain length):

N(t) =
n(t)

|L|2
(9)

– The Clark & Evans index ICE also called the nearest neighbor method [6], allowing
to analyze the aggregation of individuals in a given space, is defined by:

ICE =
r̄a
r̄e

(10)

with

r̄a =
1

n(t)

n(t)∑
i=1

ri & r̄e =
1

2
√
N(t)

where, r̄a represents the average of distances to nearest neighbor, r̄e is the average
distance to nearest neighbor expected in an infinitely large random distribution,
and ri is the nearest neighbor’s distance from the individual i. If ICE = 1, then
the spatial structure is random; If ICE < 1, then it is aggregated (in the case of an
extreme aggregation, ICE = 0); And if ICE > 1, the spatial structure is regular.

The dynamic model of the spatial moments obtained is a dynamic system of integro-
differential equations, depending on the vector distance ξ and the time t. Its resolution
is based on numerical methods allowing its temporal and spatial discretization. The
trapezoid method is used to approximate the spatial integrals, and the explicit Runge
Kutta method (ode23) is used for the determination of the hierarchical moments, which
allows to have, the values of the vector N(t) representing the first spatial moment,
as well as, the values of the symmetric matrix C(ξ, t) (see, Fig. 2b) representing the
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Table 1. Simulation parameters.

Descriptions Symbols Values Units

Spatial Domain L× L [−100, 100]× [−100, 100] µm2

Initial cells density N(0) 0.0156 Cells.µm−2
Neutral Zone Limit r0 5 µm
Perception zone limit r1 45 µm

Mass of a phyto cell α 0.04 µm.day−1

Diffusion rate Df 0.07 µm2.s−1

Independent division rate b1 0, 3 day−1

Dependent division rate b2 0.25 day−1

Death rate d 0.25 day−1

Competition kernel width sw 20 µm
Grid spacing h 2 µm
Maximum simulation time Tmax 67 day

second spatial moment (the average density of the pairs of cells separated by a distance
ξ at time t).

The spatial discretization of the vector distance ξ = (ξ1, ξ2), was made through
a grid spacing h, over the space. To obtain information about the spatial structure of
our phytoplankton population from the spatial moments model, we compute the spatial
correlation function (called, pair correlation function), denoted C(r, t) by dividing the
second spatial moment C(ξ, t) by the square of the first spatial moment N2(t), where
r = ‖ξ‖ =

√
ξ21 + ξ22 (Euclidean distance).

If the pair correlation function C(r, t) = 1, then there is absence of spatial struc-
ture (this is the case of the mean-field model); If C(r, t) > 1 for small values of r
then it indicates an aggregated spatial structure; And, if C(r, t) < 1 then it indicates a
disaggregated spatial structure [18].

We consider in this work only the case where b1 > d, b2 > 0 and the competition
effect taken into account at the level of the birth process only reduces the creation of new
pairs of individuals separated by a distance vector ξ but do not lead to its destruction,
only the movement of cells or their death are responsible for the loss of even cells.

The figures below include the simulation results of the individual-based model
(IBM), the spatial moments model (SMM) and the mean-field model (MFM), according
to the parameter values summarized in the Table. 1. Moreover, for the model of spatial
moments, we set as an initial condition at t = 0, C(ξ, 0) = N2(0) (corresponding to
the absence of spatial structure). Regarding the IBM results presented in this work, each
result is an average of 3 repetitions.

5 Results

5.1 The moment closure

For a good approximation of the IBM by the dynamic model of spatial moments, we
must choose the appropriate moment closure for the third spatial moment. For this pur-
pose, we compared the simulation results of the IBM with those obtained by the mo-
ments model in the case of using different closures: of power 1, of power 2 and of
power 3. The different expressions of these closures are summarized in Appendix. A.
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Fig. 1. Comparison of moment closures for the third spatial moment. This graph represents the time evolution of the first
spatial moment N(t), obtained by simulating the IBM, MFM and the spatial moments model using six different closures
whose expressions are defined in Appendix. A.

The figure (Fig. 1) represents the time evolution of the first spatial moment N(t), ob-
tained by the IBM and the SMM when using six different closures. We note that the use
of a symmetrical closure of power 2 with α = 1, β = 1 and γ = 1 gives results for the
SMM closer to those of the IBM, which leads to opt for the closure power-2 (1, 1, 1)
and to use it in all simulations of the SMM.

5.2 The medium case

The figure ( Fig. 2) shows the simulation of the spatial moments model and the mean-
field model where all variable parameters take medium values. The graph (Fig. 2a) rep-
resents the temporal evolution of the average density of individualsN(t) for a 300 days
duration in the case of SMM and MFM. For the spatial moments model, the N(t) func-
tion grows at the beginning of the period corresponding to the population increase due to
the cellular reproduction of phytoplankton. This growth induces the creation of aggre-
gates which will be maintained thanks to the chemosensory capacities in phytoplankton
cells, as shown in the figure (Fig. 2c) representing the time evolution of the pair cor-
relation function for r = 0 in the case of the SMM, where the function C(0, t) grows
and reaches a maximum value, indicating that aggregate formation attains a high level,
coinciding with the top increase rate of N(t) (see, Fig. 2a, c). However, the C(0, t) func-
tion subsequently decreases (see, Fig. 2c), since once important aggregates are formed,
the local density of individuals increases and competition intensifies, which slows down
cellular reproduction and thus the formation of aggregates till the density function of
individuals N(t) and the correlation function of pairs C(0, t) achieve a stability (see,
Fig. 2a, c), that indicates an aggregated spatial structure at equilibrium.

In the case of the mean-field model, the population undergoes logistic growth un-
til attaining a stability (see, Fig. 2a) corresponding to the equilibrium density which is
equal to N∗ = (b1 − d)/b2. Notice that the graph of the N(t) function has a lower
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Fig. 2. Simulation of the SMM and the MFM. (a) The first spatial moment as a function of time t expressed by the
average density of individualsN(t) for a period of 300 days obtained by simulating the SMM and the MFM. (b) The pair
correlation function at t = 300 days, as a function of vector distance ξ = (ξ1, ξ2), obtained by dividing the second
spatial moment C(ξ, t) at t = 300 days by N2 at the same time t = 300 days, using the SMM. (c) The temporal
evolution of the pair correlation function C(r, t) for r = 0 over a period of 300 days in the case of the SMM and MFM.
(d) The correlation function of pairsC(r, t) as a function of distance r at time t = 300 days in the case of the SMM and
MFM.

level in the SMM than in the non-spatial model (MFM), because the moments model
is dependent on the local density and takes into account the local spatial interactions
that exist between phytoplankton cells (due to the competition on resources and attrac-
tion resulting from their chemosensory capacities), in contrast to the non-spatial model
which considers the space homogeneous and ignores local effects of the spatial struc-
ture, so that, regardless of the variation in distance or time, the function C(r, t) remains
unchanged and equal to 1 (see, Fig. 2c, d).

The figure (Fig. 2b), which represents the pair correlation function at time t =
300 days as a function of the vector distance ξ, allows to see that the pair correlation
function is a symmetrical function, with values greater than 1 indicating the existence of
aggregates. Also, this function is a decreasing function with regard to distance, it takes
high values when the vector distances between the individuals of a pair are narrow, i.e.
when the individuals are aggregated. This is confirmed by the figure (Fig. 2d), which
shows that the pair correlation function at time t = 300 days expressed as a function
of the distance r (the Euclidean distance of ξ), is a decreasing function with distance r,
and for r = 0, the pair correlation function takes its highest value.

The figure (Fig. 3), compares the simulation results of the IBM, SMM and MFM in
the medium case where all variable parameters take medium values. We note that the
first spatial moment N(t) predicted by the IBM, is similar to the approximation given
by the spatial moments model, both have the same trendendency (see, Fig. 3a). Con-
cerning the spatial structure of the population, the results obtained by the IBM and the
SMM show the transition from a regular spatial structure to an aggregated one. Indeed,
according to the graphs (Fig. 3b, c) which respectively represent the temporal evolution
for 67 days of the Clark & Evans index ICE and the pair correlation function C(r, t)
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Fig. 3. Simulation results of the IBM, the MFM and the SMM. (a) Represents the temporal evolution of the average density
of individuals N(t) for a duration of 67 days, obtained by the IBM, the SMM and the MFM. (b) The temporal evolution
of the Clark & Evans index (ICE) for 67 days, obtained by simulating the IBM. (c) The temporal evolution of the pair
correlation function C(r, t) for 67 days in case r = 0, obtained by simulating the SMM. (d) Represents the evolution of
the correlation function of pairs C(r, t) as a function of distance r at t = 67 days, obtained by the SMM.

for r = 0, we see that at the beginning of the period of intense population reproduc-
tion and thus at the beginning of the creation of aggregates (see, Fig. 3a), the Clark &
Evans index displays values varying approximately between 0.96 and 1.05 (see, Fig.
3b), while the C(0, t) correlation function increases (see, Fig. 3c). The accentuation of
aggregation, made that the function C(0, t) continued to rise until it reached its peak,
coinciding with a marked decrease in Clark & Evans index values, being less than 1,
indicating the amplification and strengthening of aggregates within the population. But,
since competition intensifies, there will then be a reduction in aggregate formation, ex-
pressed by the diminution of C(0, t) and by the slowing down of the Clark & Evans
index. The results obtained at the end of the period in t = 67 days reflect the existence
of aggregates in the population (see, Fig. 3b, c, d), the ICE index attains an approxi-
mate value of 0.75 and the C(r, 67) function which decreases with distance, has values
greater than 1, such that the final value of C(0, t) function in t = 67 days (see, Fig. 3c)
corresponds to the first value of the function C(r, 67) for r = 0 (see, Fig. 3d).

5.3 The effect of cellular diffusion

Through the figure (Fig. 4), we will study the effect of cell diffusion on population
dynamics and spatial structure. We simulate the models IBM, MFM and SMM in the
case of low diffusion (see, Fig. 4 a, b, c, d) and in the case of high diffusion (see, Fig. 4 e,
f, g, h). Simulation results of the two scenarios obtained from the IBM are in agreement
with the ones obtained from the SMM.

In the case of a low diffusion, the pairs correlation function C(r, t) takes values
greater than one, but that are higher compared to its values in the case of medium and
high cell diffusion, whether for C(0, t) (see, Fig. 3c and Fig. 4c, g) or for C(r, 67) (see,
Fig. 3d and Fig. 4d, h) when the distance r between individuals is small. This means
that aggregation between individuals is stronger in the case of low diffusion than in
the case of medium and high diffusion. This is confirmed by the Clark & Evans index,
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Fig. 4. Analysis of the effect of cell diffusion using IBM, MFM and SMM. The graphs (a), (e) Represent the temporal
evolution of the average density of individualsN(t) for a duration of 67 days, obtained by the IBM, the SMM and the MFM.
(b), (f) The temporal evolution of the Clark & Evans index (ICE) for 67 days, obtained by simulating the IBM. (c), (g)
The temporal evolution of the pair correlation functionC(r, t) for 67 days in case r = 0, obtained by simulating the SMM.
(d), (h) Represent the evolution of the correlation function of pairs C(r, t) as a function of distance r at t = 67days,
obtained by the SMM. Graphs (a), (b), (c), (d) are obtained in the case of low diffusion where Df = 0.04, and graphs
(e), (f), (g), (h) are obtained in the case of high diffusion where Df = 0.12, for the rest of the parameters take the
same values (see, Table. 1).

since the graph of ICE shows values less than 1 and smaller in low diffusion than in
medium and high diffusion (see, Fig. 3b and Fig. 4b, f). We also notice that the Clark
& Evans index evolution concords with that of the function C(0, t) (see, Fig. 4b, c, f,
g). These results are explained by the fact that in case of weak diffusion, after phyto-
plankton reproduction, newborns move slowly and do not disperse rapidly from their
mother cells, creating clusters of individuals that will maintain by the attraction process
between cells due to the chemosensory competences. As the competition within these
aggregates is medium, it acts by slowing down the birth rate, this leads to a reduction
in the number and the sizes of the formed aggregates. As a result, the average density
of individuals N(t) is diminished in the case of low diffusion compared to the case of
medium and high diffusion (see, Fig. 4a, e).

Inversely, when cell diffusion is high, cells tend to moving more rapidly in space,
which does not facilitate the creation of aggregates, as shown in the graphs of C(0, t)
and C(r, 67) in high diffusion (compared to the case of medium and low diffusion).
This is also confirmed by the Clark & Evans index ICE , which shows higher values in
the case of high diffusion than in the case of medium and low diffusion. Thus the effect

ICMA2021-12



Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

Fig. 5. The simultaneous effect of competition and diffusion in the case of a large perception radius, using the SMM. The
graphs (a), (d) represent the first spatial moment as a function of time t expressed by the average density of individuals
N(t) for a period of 400 days obtained by simulating the SMM and the MFM. (b), (e) The temporal evolution of the
pair correlation function C(r, t) for 400 days in case r = 0, obtained by simulating the SMM. (c), (f) Represent the
evolution of the pairs correlation function C(r, t) as a function of distance r at t = 400 days, obtained by the SMM.
Graphs (a), (b), (c) are obtained in the case where Df = 0.04, r1 = 60 and b2 = 0.1, and graphs (d), (e), (f) are
obtained in the case Df = 0.12, r1 = 60 and b2 = 0.1, for the rest of the parameters take the same values (see, Table.
1).

of competition is reduced within the population, and as a result, the first spatial moment
N(t) in high diffusion reaches a higher level than in medium and low diffusion.

5.4 The simultaneous effect of cellular diffusion and competition over the long
term

The figures (Fig. 5& Fig. 6) show at the long-term the simultaneous effect of cellular
diffusion and competition on individual average density and on their aggregation in the
case of a large perception radius, using the SMM. According to the obtained simulation
results, a strong aggregation is found when diffusion and competition were simultane-
ously low (see, Fig. 5b compared to Fig. 5e & Fig. 6b, e). In fact, cellular reproduction
under a weak competition between phytoplankton cells increases the density of indi-
viduals (see, Fig. 5a, d in comparison with Fig. 6a, d) and the creation of aggregates
(see, Fig. 5b, e in comparison with Fig. 6b, e). Moreover, low cell diffusion favors the
clustering of individuals and the appearance of dense aggregates (see, Fig. 5b), never-
theless the aggregation of individuals will continue until the competition within these
clusters intensifies (following the increase in local density), causing a slowdown in cell
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Fig. 6. The simultaneous effect of competition and diffusion in the case of a large perception radius, using the SMM. The
graphs (a), (d) represent the first spatial moment as a function of time t expressed by the average density of individuals
N(t) for a period of 400 days obtained by simulating the SMM and the MFM. (b), (e) The temporal evolution of the
pair correlation function C(r, t) for 400 days in case r = 0, obtained by simulating the SMM. (c), (f) Represent the
evolution of the pairs correlation function C(r, t) as a function of distance r at t = 400 days, obtained by the SMM.
Graphs (a), (b), (c) are obtained in the case whereDf = 0.04, r1 = 60 and b2 = 0.45, and graphs (d), (e), (f) are
obtained in the caseDf = 0.12, r1 = 60 and b2 = 0.45, for the rest of the parameters take the same values (see, Table.
1).

reproduction and hence in the individual’s mean density and aggregation, driving the
population in the long term towards stability as seen in the figure (Fig. 5a, b).

So, in the case of slow diffusion, when competition is low, the average density of
individuals takes higher values with stronger cell aggregation in the short and medium
term, than in the case of intense competition (see, Fig. 5a, b & Fig. 6a, b). In the long
term, the C(r, t) function tends to stabilize and to reach an equilibrium characterized
by an aggregative spatial structure, although the initial intensity of competition between
the cells was different for the two figures (weak intensity of competition in Fig. 5b, c &
Fig. 5e, f versus high intensity in Fig. 6b, c & Fig. 6e, f). We can see at equilibrium that
the correlation function of the C(r, t) pairs in both cases is almost identical. Hence, the
competition has a striking effect in the short and medium term on the aggregation of
cells, while in the long term, the population stabilizes and the effect of competition is
reduced due to an equilibrium between different mechanisms that act within the pop-
ulation, between cell reproduction and competition on the one hand, and between the
creation of aggregates and cell diffusion on the other hand.

High cell diffusion allows cells to disperse rapidly in space and to free themselves
from aggregates (if the force of attraction is lower than diffusion), which reduces clus-
ter formation, thus local density in small neighborhoods is decreased, engendering an
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increase in cell reproduction and thus in the average density of individuals (see, Fig. 4a,
b; Fig. 5a, b & Fig. 6a, b).

6 Discussion

In our research, we were interested in the dynamics of a population of motile phyto-
plankton and more specifically in the phenomenon of aggregation of these living be-
ings. We wanted to study this phenomenon, using a new approach, called the spatial
moments whose role is giving good approximation of the dynamics of individual-based
models (IBM).

Based on the results obtained from our simulations, the spatial moment model gave
a good prediction of the behaviour of the IBM for the selected parameters. Indeed, the
two models showed rigorously the same trend in population dynamics and spatial struc-
ture where the information provided by the Clark & Evans index for IBM corresponds
to that provided by the pair correlation function C(r, t) for SMM. The application of
the spatial moments method has allowed to build an aggregated mathematical model
from small-scale biological processes characterizing phytoplankton cells and helped to
analyze both the temporal evolution of the population density and the emerging spatial
structure obtained when taking into account the different spatial interactions between
cells. Thus, the spatial moments model obtained here can be considered in the phy-
toplankton literature as the first mesoscopic model developed for the study of phyto-
plankton aggregation in the presence of competition in the division process. It permits
to explore and describe on an intermediate scale the changes (in time) that have occurred
within the population.

The analysis of the simulation results of the two models leads to the conclusion
that the formation of phytoplankton aggregates is due to both the attraction of cells to
each other as a consequence of their chemosensory capacities and the process of cell
reproduction.

In contrast with the IBM, which was long and hard to go far in time, we were able
with the spatial moments model to complete the analysis, and see in the long-term the
simultaneous effect of cellular diffusion and competition on individual average density
and on their aggregation in the case of a large perception radius. As a result, high cell
diffusion can be considered as a means of reducing and attenuating competition in the
population and particularly at the level of small neighborhoods.

The deterministic approximation by moments made it possible not only to study the
aggregation phenomenon and to capture the local spatial interactions of individuals due
to the existence of competition for resources and chemosensory abilities in phytoplank-
ton, but also to follow the evolution over time of the local environment of individuals
and to understand the links between spatial structure and population dynamics, con-
trary to aggregate models of the mean-field which are unable to do so. Furthermore, the
application of the spatial moments method helps to reduce the complexity of stochas-
tic models, it is easier to analyze and minimizes the memory capacity and computing
time required for simulation, especially if we are interested on the behaviour of models
over the long term or on the identification of stationary states, the moment models give
results more quickly and do not need high-performance computer hardware as IBM
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models do. As we noticed in this study, in the simulations, with the spatial moments
model we went up to 300 days, while for IBM it was already too much at 67 days.
Nevertheless, the moment approximation is not without limits, this method is based on
a system composed of the dynamics of the first and second spatial moment, which we
are constrained to close. The choice of the closure is very important, because the use of
an inappropriate closure will have an impact on the quality of the approximations, also,
this method depends only on the first and the second spatial moment, it does not take
into account the correlations of triplets or quadruplets ...etc, which can exist between
individuals of the population.

Appendix

A The moment closure

- The power-1 closure [8, 20] is defined by:

T (ξ, ξ′, t) = N(t) C(ξ, t) +N(t) C(ξ′, t) +N(t) C(ξ′ − ξ, t)− 2N(t)3 (11)

- The power-2 closure [8, 19, 20] is defined by:

T (ξ, ξ′, t) =
1

α+ γ
(α
C(ξ, t)C(ξ′, t)

N(t)
+β

C(ξ, t)C(ξ′ − ξ, t)

N(t)
+γ

C(ξ′, t)C(ξ′ − ξ, t)

N(t)
−βN(t)3)

(12)
The symmetric power-2 closure corresponds to the case where α = β = γ.

- The power-3 closure [16] is defined by:

T (ξ, ξ′, t) =
C(ξ, t)C(ξ′, t)C(ξ′ − ξ, t)

N(t)3
(13)
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