
Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

EQUITABLE COLORING AND SCHEDULING ON IDENTICAL
MACHINES

Sarah NOURI

RECITS laboratory,
Faculty of Mathematics,

USTHB University,
BP 32 El-Alia, Bab Ezzouar,

Algiers, Algeria.
Centre de Recherche

sur l’Information Scientifique et
Technique (CERIST)

05, Rue des 3 frères aissou,
Ben Aknoun Algiers Province,

Algeria

Mourad BOUDHAR

RECITS laboratory,
Faculty of Mathematics,

USTHB University,
BP 32 El-Alia, Bab Ezzouar,

Algiers, Algeria.

ABSTRACT

In this work we are interested in the complexity of the equitable coloring of the bipartite graph
in which we prove that the problem of 2-equitable coloring of union of complete bipartite graphs
and the 3-equitable coloring of a connected bipartite graph are N P-complete.

It also discusses the scheduling of conflicting jobs (that cannot be executed on the same ma-
chine) on identical machines while evenly distributing the load between them. The paper presents
some complexities of subproblems and describes and evaluates a branch and bound algorithm, a
Mixed Integer Programming formulations (that can solve some instances with 100 jobs) and six
proposed heuristics where their good performance is shown in computational experiments. Such
problem with identical processing times can be viewed as r-equitable k-coloring.

1. INTRODUCTION

A proper and complete vertex coloring of a graph is a way of coloring all its vertices such
that no two adjacent vertices are of the same color. A proper coloring of the vertices of a graph
is equitable if, for any two different classes of colors, the difference between the sizes of these
classes is at most one. The notion of equitable coloring is topical in recent years because colo-
ring has become a major and active area of graph theory, and several applications of this problem
have emerged and motivated mathematicians. This notion appeared in October 1973 thanks to
Meyer[4] who was motivated by an article of Tucker[5]. Tucker presented in his article a coloring
problem of a graph, where the vertices represent the garbage collection routes, with two vertices
(routes) are adjacent if and only if these two routes cannot be run on the same day. This transport
problem consists in finding a partition of the routes so that they are visited all in 6 days. Meyer
thought it would be more interesting if the number of routes run each day were approximately
the same along the week (so finding an equitable 6-coloring). For this garbage collection routes
problem, the routes may not be identical in length or garbage quantity. We propose to assign
weights to the vertices and to partition the graph so that the difference between the sum of the
independent sets’ weights is as small as possible. That’s lead us to consider a scheduling problem

ICMA2021-1



Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

of uninterruptible jobs on identical machines, where some conflict jobs cannot be executed on
the same machine (these constraints are modeled by a conflict graph). In this graph, the vertices
represent jobs and two vertices are adjacent if and only if corresponding jobs are in conflict. We
want to schedule jobs while minimizing the large difference between the scheduling lengths of
the machines εmax.

Many real-life problems can be seen as an application of our problem :
— Distributing process having different lengths evenly across a computer network so that

no single device is overwhelmed.
— The attribution of courses ; that may not have the same duration ; to slots so as to avoid

simultaneously organizing pairs of incompatible courses and to evenly distribute the
courses between available time intervals.

— Scheduling television commercials during commercial breaks of the same length[1].
In [2] authors generilazed the equitable coloring as follow :

Definition 1.1 An r-equitable k-coloring of the vertices of G is a k-coloring, such that, for any
two different classes of colors, the difference between the sizes of these classes is at most r.

2. EQUITABLE COLORING

We have shown that equitable coloring of the bipartite graph is NP-hard when the number of
colors is equal to 2 or 3.

Theorem 2.1 The problem of 2-equitable coloring remains N P-complete for union of com-
plete bipartite graphs.

Proposition 2.2 3-equitable coloring of a connected bipartite graph is N P-complete.

3. SCHEDULING ON IDENTICAL MACHINES WITH CONFLICT GRAPHS

Let G = (J,E) be a conflict graph where J is a set of n jobs (J j) j=1,··· ,n and each job J j
has a processing time p j. We schedule J on m identical machines (Mi)i=1,··· ,m, such that no jobs
adjacent in G can be processed on the same machine. In the indicated problem, a job can be
processed by any machine and the aim is to schedule jobs while minimizing the large difference
between the scheduling lengths of the machines εmax. This problem denoted Pm|G|εmax has a
solution if m > χ(G), with χ(G) the chromatic number of G.

3.1. Complexity of the problem

Proposition 3.1 The following problems :
— P2||εmax,
— P2|G|εmax with G a unconnected bipartite graph,
— P2|G|εmax with all vertices of G are of degree 1,
— P2|G, p j = 1|εmax with G a union of complete bipartite graphs and εmax 6 1 ,
— P3|G, p j = 1|εmax with G a connected bipartite graph and εmax 6 1,
— Pm|p j = 1,G|εmax.

are N P-Hard.

Theorem 3.2 P3|En+1|εmax where En+1 is the star graph of n+1 jobs is N P-Hard.

Theorem 3.3 Let P2|UChains|εmax be a problem of scheduling UChains (a set of chains) on
two identical machines with the objective of minimizing εmax, while the processing time of each
job of a chain k is 1 or pk. This problem is N P-Hard.

ICMA2021-2



Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

Proposition 3.4 Pm|Chain, p j = 1|εmax is polynomialy solvable in O(1).

Proposition 3.5 Pm|UChains, p j = 1|εmax with UChains a union of chains, is polynomialy sol-
vable in O(1).

Proposition 3.6 Pm|Cycle, p j = 1|εmax with m≥ 3 is polynomialy solvable in O(1).

Proposition 3.7 Pm|Wheel, p j = 1 , j 6= center|εmax is polynomialy solvable in O(1).

3.2. Mixed Integer Programming

A Mixed Integer Programming (MIP) formulation of the minimum εmax problem follows :
For every job j in J and machine i in M, we introduce a binary variable xi j equal to 1 if job j is
assigned to machine i and 0 otherwise. Thus, the formulation is :

minεmax
m
∑

i=1
xi j = 1, ∀ j ∈ J

xi j + xit 6 1, ∀( j, t) ∈ E,∀i ∈M
n
∑

j=1
p jxi j−∑

n
j=1 p jxl j 6 εmax, ∀i 6= l ∈M

xi j ∈ {0,1}, ∀i ∈M,∀ j ∈ J
εmax ≥ 0

The first set of equalities ensures that every job is scheduled on exactly one machine. The
second one force conflicting jobs to be scheduled on different machines, and the third one gua-
rantees the load balancing constraint. It is enough to know just the optimal assignment because
the εmax will be the same for any permutation of the jobs assigned to each machine. This formu-
lation has n+m(m+2|E|−1) constraints and mn+1 variables.

We also proposed an improvement to the model (noted PL2) that allowed us to solve ins-
tances five times larger than those solved by the above model. The linear formulations were
solved with CPLEX 20.1.

4. RESOLUTION METHODS

A Branch and Bound (B&B) algorithm is one of the main methods for solving N P-hard
discrete optimization problems. In [3], the authors present a Branch and Bound algorithm based
on the well-known heuristic DSatur from which our branching strategy is inspired. In fact, it
extends a partial schedule to a complete schedule, for this :

— a partial schedule is obtained by assigning jobs of a maximal clique Q of G to different
machines.

— An upper bound is obtained by one of the heuristics described below.
We extend this partial schedule to a complete one by scheduling one by one the rest of

unscheduled jobs (We denote by PS the set of partial solutions). The algorithm explores branches
of this tree via a recursive call to a function called NODE and save the partial solutions in a work
pool. In order to reduce the processing speed, a parallelism of the B&B is adopted. 15 threads
(T) were used and each thread explores a branch of the tree (a partial solution) by an algorithm
based on depth first search.

We propose also two approximate methods of resolution (WN and WCSG), by bringing some
modifications to the two well-known heuristics of equitable coloring NAIV E and CreateSubgraph.
The general idea behind these heuristics is for the first one, recoloring a vertice colored with the
least frequently used color with the most used one, and for the second approache, swaping colors

ICMA2021-3



Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

PS1 PS2 PS3

T1 T2 T3 T15

Node(PSi )

work pool

list of threads

FIGURE 1 – The parallelism principle.

in entire subgraphs induced by vertices colored with the most and the least frequently used co-
lors. We modified how to choose the vertices to be permuted, we permute two jobs if it decreases
the large difference between the scheduling lengths of the machines. Four enhancements of the
jobs-to-swap search of the WCSG heuristic has been established.

4.1. Computational experiments

The proposed algorithms have been tested experimentally on a large number of randomly ge-
nerated instances. We generate two sets (A1∪A2) of conflict graphs G of different densities, with
a number of jobs n1 ∈ {10,12,15,18,20,25} for A1 and n2 ∈ {25,100,1000} for A2 ( 9 graphs
for each n1 and 12 graphs for each n2). Processing times were generated from a uniform distribu-
tion in a given range I j (5 ranges considered I1 = [1,10[, I2 = [1,50[, I3 = [1,100[, I4 = [50,100[
and I5 = [20,70[). For each pair (G, I j) we generate 30 instances and we run the algorithms to
solve them on m j machines. For A1 the number of machines is between χ(G) and χ(G)+3, and
for A2 between χ(G) and χ(G)+5 (We note by m j the number of machines χ(G)+ j−1). The
number of instances is 3960 for low density, 4020 for medium density and 2280 for high density.

The proposed algorithms were coded using C ++11 and compiled with g++ 9.3.0, the
computational experiments were carried out using an Intel (R) Xeon (R) Silver 4110 CPU @
2.10 GHz with 16 logical cores, 16G of RAM and the OS used is Ubuntu 20.04 LTS Focal Fossa
server.

In this section we present some results obtained by our methods.
Since the proposed heuristics are improvement heuristics, an initial solution (O0) must be

provided as input. O0 with χ(G) machines is an optimal solution to the problem of coloring
of G with χ(G) colors. For the initial solutions with χ(G)+ k machines, they are obtained by
reassigning a random number of jobs from the same machine to a new machine until a schedule
with χ(G)+ k machines used is obtained.

Table 1 represents the average of the percentage of the number of instances where the heu-
ristics improved the initial solution compared to the density. The table do not show the impact
of processing time intervals. In fact, we have noticed that the standard deviation between the
percentages of the different processing time intervals for the same heuristic is at most 0.024.

In Table 2, we report the number of resolved instances of A2 of different densities with
n = 100 in less than one hour. For each density we test the improvement of the PL2 and B&B
on a graph with the five processing time ranges. In total, 150 instances for each density. The
missing instances are either due to the insufficient memory space (noted IMS) or the resolution
time which exceeded one hour (noted T ). Each cell in the following table contains two values :
the first is the number of instances resolved by PL2 and the second the number of instances
resolved by B&B.

From the experimental results, we notice that :

ICMA2021-4



Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

Density Low Medium High
WN 66.84 46.44 28.28
WCSG 49.60 43.74 27.89
WCSG1A 64.42 46.18 28.26
WCSG2A 60.23 33.58 12.60
WCSG3A 69.34 40.48 19.52
WCSG4A 65.98 39.28 13.59

TABLE 1 – The average of the percentage of the improvement of O0

PL2
B&B m1 m2 m3 m4 m5

Low 150
150

150
−(IMS)

−(IMS)
−(IMS)

−(IMS)
−(IMS)

−(IMS)
−(IMS)

Medium 150
150

150
150

149(1IMS)

−(IMS)
149(1IMS)

−(IMS)
72(39IMS, 43T )

−(IMS)

High 150
150

150
150

150
150

150
−(IMS)

150
−(IMS)

TABLE 2 – by Densities

— ALL heuristics provided good solutions within a maximum arithmetic mean of 9% from
the optimal solution.

— WN yields good results compared to WCSG and its improvements.
— The second improvement of WCSG is weaker compared to WCSG and the latter’s im-

provements.
— the third and the fourth improvements of WCSG are closely competitive.
— For small instances, there is a high chance of obtaining an optimal solution very quickly

via B&B than MIP.
— For large instances and due to the problem of insufficient memory space, the improve-

ment of MIP solved more instances than B&B in less than an hour.

5. REFERENCES

[1] Gaur,D.R., Krishnamurti, R., and Kohli.R. (2009). Confict resolution in the scheduling of
television commercials. Operations Research, 57(5) :1098-1105.

[2] Hertz, A., and Ries, B. (2014).A note on r-equitable k-colorings of trees. Yugoslav Journal
of Operations Research, 24(2),293 - 298.

[3] Méndez-Díaz, I., Nasini, G., and Severín, D. A DSATUR-based algorithm for the Equitable
Coloring Problem. Computers and Operations Research, 57, 41-50(2015).

[4] Meyer, W. (1973). Equitable coloring. The American Mathematical Monthly, 80(8), 920-
922.

[5] Tucker, A. (1973). Perfect Graphs and an Application to Optimizing Municipal Services.
SIAM Review, 15(3), 585–90.

ICMA2021-5


	1  Introduction
	2  Equitable coloring
	3  Scheduling on identical machines with conflict graphs
	3.1  Complexity of the problem
	3.2  Mixed Integer Programming

	4  Resolution methods
	4.1  Computational experiments

	5  References

