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ABSTRACT

When count data exhibit excess zero, that is more zero counts than a simpler parametric dis-
tribution can model, the zero-inflated Poisson (ZIP) or zero-inflated negative binomial (ZINB)
models are often used. Variable selection for these models is even more challenging than other
regression situations because the availability of p covariates implies 4p possible models. We
adapt to zero-inflated models an approach for variable selection that avoids the screening of all
possible models.
As an additional novelty, we propose a new way of extracting information from a rich chain
of covariates ,this approach is based on a stochastic search through all regression models with
all available covariates. We fit a binary indicator of the inflation, which generates a first subset
of covariates for the zero part. Poisson and Negative Binomial models are fitted to generate a
second chain of covariates for the count part. Finally a backward elimination algorithm is used
to fit a zero inflated model. an application on automobile insurance data is described. Finally,
A simulation study is conducted to assess finite-sample behaviour, where we also compare our
approach with regularization (penalized) techniques available in the literature.
Key words : excess zeros, number of claims, ZI model, variable selection.

1. INTRODUCTION

The automobile claims experience in the insurance sector is measured by the frequency of
accidents and their amounts . In this highly competitive market, the insurer search to select fac-
tors that help to explain this loss experience. In business, psychology, social, and public health
related research, it is common that the outcomes are relatively infrequent behaviors and pheno-
mena. Data with abundant zeros are especially frequent in research studies when counting the
occurrence of certain behavioral events, such as number of purchases made, number of schoo-
labsences, number of cigarettes smoked, or number of hospitalizations. These types of data are
called count data and their values are usually non-negative with a lower bound of zero.
The classical Poisson regression model for count data is often of limited use in these disciplines
because empirical count data sets typically exhibit over-dispersion, under-dispersion or an excess
number of zeros, when, the variance is assumed to be equal to the mean, which may be viola-
ted in real data. One way to deal with over-dispersion is a negative binomial (NB) regression.
The negative binomial model belongs to the family of generalized linear models [7]. However,
although negative binomial model typically can capture overdispersion rather well, it is in many
applications not sufficient for modeling excess zeros. In the econometrics and statistics litera-
ture, Mullahy [6] and Lambert [4] proposed the zero-inflation models that address this modeling
by a second model component capturing zero counts.Zero-inflation models[4] take a somewhat
different approach : they are mixture models that combine a count component and a point mass
at zero. An overview of count data models in econometrics is provided in Cameron and Trivedi
[2] [3].
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Variable selection is important in applications because it allows to explain data in the simplest
way for better interpretability (e.g., efficient identification of risk factors). It is also a mean for
cost management, if the model is next used for prediction. From the statistical point of view, par-
simonious models have to be preferred for better prediction accuracy and better interpretation.
In addition, collinearity-related problems are mitigated when there are fewer variables involved.
We focus on the more challenging ZI model even though our methodology can be applied to the
hurdle model as well : for p available covariates, there are as many as 4p possible different ZI
models, whereas this number is 2×2p for the hurdle model, due to the orthogonality of its two
parts, which can be fitted separately.

The manuscript has the following structure. In Section 2, we present generalized linear mo-
dels for count data. A real data analysis and our proposal for stochastic variable selection are
presented in Section 3 , followed by Section 4,which introduce simulations settings, where dif-
ferent versions of our approach are contrasted with existing alternatives.
Throughout this paper,Y denotes the endogeneous (dependent, explained) variable, and (X,W)
denotes the exogenuous (independent, explanatory) variable(s)

2. REGRESSION MODELS

2.1. Zero-inflated Poisson model

The term "zero inflation" describes a situation in which the number of zeros observed in a
sample of count data is higher than the number predicted by "classical" count models (such as
Poisson or binomial models). One of the most common approaches to working with this type
of data is to assume that the probability distribution of the count variable (denoted as Y below)
is a mixture of a degenerate distribution at zero (i.e. a distribution that takes the value 0 with
probability 1) and a count model. To illustrate this idea, we suppose that the count model follows
a Poisson distribution P(λ ). The distribution of Y can then be written as follows :

Y ∼ πδ0 +(1−π)P(λ ). (1)

In the above expression, π is the probability that Y is systematically equal to zero (called the
"zero inflation probability" below) and δ0 denotes the degenerate distribution at zero. Equation
1 can alternatively be interpreted as follows :

Y ∼
{

0 with probability π

P(λ ) with probability 1−π

Suppose that we are observing a count variable Y on a sample of n individuals. Let us write
Yi for the observed value of Y at the i-th individual, i = 1, ˙...,n. We can construct a zero-inflated
Poisson regression model for Yi by allowing the probability π and the intensity λ in equation (1)
to depend on the individual i via the explanatory variables (or covariables). This model can be
stated as :

P(Y = y) =


πi +(1−πi)e−λi z = 0

(1−πi)
e−λi λ

yi
i

yi!
z = 1,2, ..

where πi and λi are, respectively, functions of the vectors of covariables Wi = (Wi1, ...,Wiq)
T

and Wi = (Xi1, ...,Xip)
T (setting Xi1 = Wi1 = 1). The components of these vectors can be either

qualitative or quantitative. The probability πi is usually described by a logistic regression :

logit(πi) = γT Wi = γ1 + γ2Wi2 + ...+ γqWiq

⇐⇒ πi =
exp(γT Wi)

1+ exp(γT Wi)
∈ (0,1).
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and the intensity λi is usually modeled by :

ln(λi) = β T Xi = β1 +β2Xi2 + ...+βpXip
⇐⇒ λi = exp(β T Xi)

(2)

where β = (β1, ...,βp)
T and γ = (γ1, ...,γq)

T are vectors of unknown parameters. We can sum-
marize this model in the form :

∀i = 1, ...,n


Yi ∼ πiδ0 +(1−πi)P(λi)
logit(πi) = γT Wi
ln(λi) = β T Xi

Notationally, we write that Yi ∼ ZIP(λi,πi). Conditional on Xi and Wi, the mean and variance
of Yi are, respectively, given by :

E(Yi|Xi,Wi) = (1−πi)λi =
exp(β T Xi)

1+ exp(γT Wi)

and
var(Yi|Xi,Wi) = (1+πiλi)(1−πi)λi = (1+πiλi)E(Yi|Xi,Wi).

The conditional distribution of Yi is overdispersed, since (1+πiλi)> 1,
and hence var(Yi|Xi,Wi)> E(Yi|Xi,Wi).

2.2. Zero-inflated Negative Binomial model

The ZINB distribution is a mixture distribution assigning a mass of πi to "extra" zeroes and
a mass of (1−πi) to a negative binomial distribution, where 0 ≤ πi ≤ 1. Note that the negative
binomial distribution is a continuous mixture of Poisson distributions, which allows the Poisson
mean λ to be gamma distributed and in this way overdispersion is modelled. Observe that this
distribution is also useful when the count is made of correlated binary random variables. More
specifically, the negative binomial distribution is given by

P(Yi = y) =
Γ(y+ν)

Γ(ν)y!

(
µi

ν +µi

)y(
ν

ν +µi

)ν

y = 0,1,2, ..; µi,ν > 0

where µi = E(Yi), ν is a shape parameter which quantifies the amount of overdispersion.
The variance of Yi is µi+µ2

i /ν . Clearly, the negative binomial distribution approaches a Poisson
distribution when ν tends to ∞ (no overdispersion). Consequently, the ZINB distribution is given
by

P(Yi = y)


πi +(1−πi)(1+

µi

ν
)−ν y = 0

(1−πi)
Γ(y+ν)

Γ(ν)y!
(1+

µi

ν
)−ν (1+

ν

µi
)−y, y = 1,2, ..

The mean and variance of the ZINB distribution are E(Yi) = (1− πi)µi and var(Yi) = (1−
πi)µi(1+πiµi + µi/µ), respectively. Observe that this distribution approaches the zero inflated
Poisson distribution and the negative binomial distribution as ν→∞ and πi→ 0, respectively. If
both 1/ν and πi ≈ 0 then the ZINB distribution reduces to the Poisson distribution.
The ZINB regression model relates πi and µi to covariates, that is,

ln(λi) = β T Xi and logit(πi) = γT Wi, i = 1,2, ..,n (3)

where Xi and Wi are p− and q−dimensional vectors of covariates pertaining to the ith
subject, and with β and γ the corresponding vectors of regression coefficients, respectively.
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3. APPLICATION

3.1. Data source

The data analyzed in this paper is a compulsory insurance for vehicle owners in Algeria. It
is offered in the form of a package including obligatorily the civil liability guarantee and one or
more other optional guarantees. This data set contains informations on 111086 Auto insurance
policy reported during the period from Junuary through to December 2011.

3.2. Variables used in the data

PolicyID identifier of the insurance policy, Numclaims Number of claims,Gender gender
of the client, Age age of the client, AgeDL age of the driving licence, AgeVEH age of the in-
sured vehicle, Brand brand of the insured vehicle, Power fiscal power of the insured vehicle,
Duration Coverage period of the insurance policy.

In this section, we did data cleaning and conducted exploratory analysis for the variables
involved in this study. Histogram is used to display the distribution of the count response variable
numclaims.

FIGURE 1 – Number of clamis made by clients

Figure1 shows histogram of the dependent variable.We clearly see a large number of zeros
which cannot be modeled adequately with a Poisson model ; thus, the use of a zero-inflated count
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model seems warranted.

3.2.1. Results

TABLE 1 – Estimated coefficients and standard errors for the count and zero Models.

parameter variable Poisson NB ZIP ZINB
est. se est. se est. se est. se

count
β1 Intercept -3.399 0.045 -3.401 0.124 -3.083 0.067 -3.388 0.054
β2 gender -0.284 0.020 -0.294 0.024 -0.129 0.035 -0.215 0.027
β3 agevr 0.615 0.032 0.599 0.036 0.827 0.052 0.673 0.037
β4 agevi 0.144 0.036 0.142 0.039 0.146 0.038 0.141 0.039
β5 ageDL -0.028 0.003 -0.027 0.004 -0.026 0.004 -0.031 0.004
β6 age25 -0.222 0.030 -0.223 0.035 -0.193 0.034 -0.195 0.036
β7 age35 -0.167 0.033 -0.164 0.038 -0.182 0.036 -0.206 0.039
β8 age45 -0.019 0.026 0.017 0.029 -0.052 0.029 -0.027 0.029
β9 age55 0.052 0.016 0.062 0.026
β10 pow4 -0.427 0.112 -0.431 0.123 -0.414 0.123
β11 brand3 0.095 0.014 0.097 0.017 0.079 0.017
β12 brand4 -0.156 0.020 -0.153 0.022 -0.141 0.021 -0.150 0.022
β13 brand5 0.204 0.015 0.205 0.017 0.088 0.025 0.182 0.017
β14 age35 :ageDL 0.018 0.004 0.018 0.005 0.018 0.005 0.020 0.005
β15 age45 :ageDL 0.009 0.003 0.008 0.003 0.010 0.003 0.010 0.003

θ Theta 1.006 0.024 1.170 0.029

zero
γ1 Intercept 0.347 0.133 0.409 0.431
γ2 gender 0.299 0.081 0.708 0.289
γ3 agevr 0.568 0.110 1.295 0.266
γ4 age45 -0.031 0.044
γ5 pow4 0.720 0.187
γ6 brand3 -0.196 0.033
γ7 brand5 -0.237 0.055
γ8 duration -0.118 0.004 -0.525 0.042
AIC 144401.7 140705 140541.9 139901.9
BIC 144401.7 140848.9 140743.9 140084.6
log-ik -72113.71 -70337.31 -70249.94 -69931.94

(df=15) (df=15) (df=21) (df=19)

In Table 1, we get outputs from four different models (Poisson, Negatif Binomial ,ZIP and
ZINB). The first section of the output is for the positive-count process. The second section is for
the zero-count process.In these outputs we post only the significant preditors (0.01 significance
level). It can be seen that the parameter estimates of the Poisson,NB, ZIP and ZINB models
are very similar for the count part. In addition, almost all these models have the same set of
significant variables.
For purpose of comparison, we also report log-likelihood and AIC and BIC values at the bottom
of the Table 1. The Poisson regression model had the largest criterion value, demonstrating the
worst fit to the data. For the other three models, the ZINB model had smaller AIC and BIC
values comparing with NB and ZIP models, while we find a little difference between NB and
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ZIP criterion values. Among all the fitted models, the Zero-inflated Negative Binomial model
had the smallest AIC and BIC values, so ZINB is the best choice for our response variable.

4. SIMULATION STUDY

We assess the performance of our proposed approach and contrast it to computing algo-
rithms for penalized log-likelihood functions. The penalty functions include the least absolute
shrinkage and selection operator (LASSO) (Tibshirani, 1996), smoothly clipped absolute devia-
tion (SCAD) (Fan and Li, 2001) and minimax concave penalty (MCP) (Zhang, 2010).
Our approach is implemented in R (R Development Core Team, 2012), with the pa-
rameter estimates of the ZI model obtained from the zeroinfl function of package pscl
(Jackman, 2011). Dr A. Buu kindly provided her R code (Buu et al., 2011) and we used the R
package mpath (Wang et al., 2014b) to implement the approach of Wang et al. (2014a) and
Wang et al. (2015). In both penalized approaches, we use the default parameter setting.

In this study, we consider one of the scenarios in Wang et al. (2015), namely their example
1. A ZINB model is considered with 20 covariates for each regression , so that p = q = 20. For
three sample sizes n = 500,1000,1500 , the predictors are randomly drawn from a N20(0,Σ)
distribution, where Σ has elements ρ |i− j|, for i, j = 1, ..,20, with ρ = 0.4. The parameters are set
to θ = 2,

β = (1.10,0,0,0,−0.36,0,0,0,0,0,0,0,0,−0.32,0,0,0,0,0,0,0)

and
γ = (0.30,−0.48,0,0,0,0.4,0,0,0,0,0.44,0,0.44,0,0,0,0,0,0,0,0)

We consider 1000 replications.

Results

TABLE 2 – Simulation results with n = 500. Medians and standard deviations (in paren-
theses) of MSE, PE, θ̂ , sensitivity and specificity.

Method MSE Sensitivity Specificity PE θ̂

NB component
ZINB-LASSO 0.074(0.02) 0.333(0.079) 1(0.032) 2.84(0.595) 1.113(0.625)
ZINB-MCP 0.071(0.017) 0.333(0.081) 1(0.22) 2.81(0.748) 1.225(0.445)
ZINB-SCAD 0.073(0.019) 0.333(0.098) 1(0.052) 2.825(0.626) 1.177(0.552)
Backward Elimination 0.095(0.02) 1(0.219) 0(0.314) 2.95(0.835) 1.463(0.566)
ZINB 1% 0.066(0.019) 0.333(0.094) 1(0.044) 2.77(0.613) 1.405(0.437)
ZINB 5% 0.067(0.02) 0.333(0.095) 1(0.043) 2.795(0.617) 1.395(0.459)
ZINB 10% 0.076(0.023) 0.333(0.103) 0.994(0.042) 2.83(0.627) 1.227(0.568)

Zero component
ZINB-LASSO 0.063(12872503.434) 0.143(0.132) 1(0.068)
ZINB-MCP 609.299(69489682.931) 0.857(0.275) 0.464(0.403)
ZINB-SCAD 0.08(33472586.102) 0.286(0.165) 1(0.103)
Backward Elimination 95616.67(1045559.185) 1(0.238) 0(0.318)
ZINB 1% 0.06(1.035) 0.286(0.116) 1(0.035)
ZINB 5% 0.062(1.154) 0.286(0.114) 1(0.031)
ZINB 10% 0.07(1.38) 0.143(0.083) 1(0.018)
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TABLE 3 – Simulation results with n = 1000. Medians and standard deviations (in paren-
theses) of MSE, PE, θ̂ , sensitivity and specificity.

Method MSE Sensitivity Specificity PE θ̂

NB component
ZINB-LASSO 0.074(0.017) 0.33(0.074) 1(0.032) 2.74(0.468) 1.117(0.45)
ZINB-MCP 0.072(0.014) 0.33(0.068) 1(0.218) 2.685(0.497) 1.2(0.379)
ZINB-SCAD 0.074(0.014) 0.33(0.01) 1(0.059) 2.717(0.475) 1.165(0.354)
Backward Elimination 0.092(0.016) 1(0.27) 0(0.39) 2.849(0.574) 1.074(0.286)
ZINB 1% 0.071(0.017) 0.33(0.099) 0.994(0.043) 2.705(0.473) 1.283(0.33)
ZINB 5% 0.068(0.014) 0.33(0.093) 1(0.043) 2.653(0.46) 1.34(0.298)
ZINB 10% 0.068(0.013) 0.33(0.093) 1(0.043) 2.655(0.461) 1.334(0.296)

Zero component
ZINB-LASSO 0.05(925263.184) 0.286(0.19) 1(0.064)
ZINB-MCP 0.114(55177868.007) 0.857(0.227) 0.643(0.411)
ZINB-SCAD 0.066(16026221.81) 0.286(0.187) 1(0.074)
Backward Elimination 93009.101(8206888.167) 1(0.235) 0(0.387)
ZINB 1% 0.049(1.1) 0.286(0.145) 1(0.022)
ZINB 5% 0.046(0.787) 0.286(0.148) 1(0.035)
ZINB 10% 0.047(0.69) 0.286(0.143) 1(0.036)

TABLE 4 – Simulation results with n = 1500. Medians and standard deviations (in paren-
theses) of MSE, PE, θ̂ , sensitivity and specificity.

Method MSE Sensitivity Specificity PE θ̂

NB component
ZINB-LASSO 0.071(0.016) 0.333(0.074) 1(0.034) 2.68(0.426) 1.18(0.394)
ZINB-MCP 0.07(0.013) 0.333(0.063) 1(0.218) 2.7(0.453) 1.245(0.341)
ZINB-SCAD 0.074(0.012) 0.333(0.102) 1(0.067) 2.67(0.426) 1.159(0.296)
Backward Elimination 0.089(0.016) 1(0.306) 0.056(0.435) 2.875(0.508) 1.038(0.225)
ZINB 1% 0.07(0.013) 0.333(0.095) 1(0.042) 2.627(0.415) 1.313(0.244)
ZINB 5% 0.068(0.011) 0.333(0.097) 1(0.043) 2.62(0.414) 1.32(0.236)
ZINB 10% 0.069(0.011) 0.333(0.102) 1(0.045) 2.62(0.414) 1.31(0.236)

Zero component
ZINB-LASSO 0.045(40.817) 0.286(0.228) 1(0.059)
ZINB-MCP 0.055(47933187.228) 0.857(0.2) 0.714(0.4)
ZINB-SCAD 0.055(11422552.628) 0.286(0.216) 1(0.081)
Backward Elimination 62558.811(1196548.234) 1(0.2) 0.071(0.438)
ZINB 1% 0.04(0.628) 0.429(0.174) 1(0.025)
ZINB 5% 0.038(0.387) 0.429(0.159) 1(0.035)
ZINB 10% 0.038(0.39) 0.429(0.154) 1(0.036)
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