VANISHING VISCOSITY FOR THE NAVIER-STOKES BOUSSINESQ SYSTEM

Youssouf Maafa,Mohamed Zerguine
University of Batna -2- ,LEDPA

Abstract

This paper deals with the local well-posedness in time for the Navier-Stokes Boussinesq equations in two dimensions in the framework of a smooth vortex patch. Furthermore, we provide the inviscid limit for the velocity and the density.

1. INTRODUCTION

The system of the Navier-Stokes Boussinseq with viscosity $\mu>0$ given by the coupled equation,

$$
\begin{cases}\partial_{t} v_{\mu}+v_{\mu} \cdot \nabla v_{\mu}-\mu \Delta v_{\mu}+\nabla p=\theta_{\mu} \vec{e}_{2} & \text { if }(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{2}, \\ \partial_{t} \theta_{\mu}+v_{\mu} \cdot \nabla \theta_{\mu}=0 & \text { if }(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{2}, \\ \operatorname{div}_{\mu}=0, & \\ \left(v_{\mu}, \theta_{\mu}\right)_{\mid t=0}=\left(v_{\mu}^{0}, \theta_{\mu}{ }^{0}\right) . & \end{cases}
$$

where $v=\left(v^{1}, v^{2}\right) \mathbb{R}^{2}$ refers to the velocity vector filed located in position $x \in \mathbb{R}^{2}$ at a time t which assumed to be incompressible, the scalar function $\theta(t, x) \in \mathbb{R}_{+}$denotes the temperature or the density, $p(t, x) \in \mathbb{R}$ is the pressure which relates v and θ through an elliptic equation. $\theta_{\mu} \vec{e}_{2}$ is the buoyancy force in the direction $\vec{e}_{2}=(0,1)$.

Taking the curl operator to the momentum equation in $\left(\mathrm{NSB}_{\mu}\right)$ we get

$$
\left\{\begin{array}{l}
\partial_{t} \omega_{\mu}+v_{\mu} \cdot \nabla \omega_{\mu}-\mu \Delta \omega_{\mu}=\partial_{1} \theta_{\mu}, \\
\partial_{t} \theta_{\mu}+v_{\mu} \cdot \nabla \theta_{\mu}=0, \\
\left(\theta_{\mu}, \omega_{\mu}\right)_{\mid t=0}=\left(\theta_{\mu}^{0}, \omega_{\mu}^{0}\right) .
\end{array}\right.
$$

$\left(\mathrm{VD}_{\mu}\right)$

Our goal is to prove that the system $\overline{\mathrm{NSB}_{\mu}}$ is locally well-posed whenever the initial vorticity is a smooth vortex patch, that is $\omega_{\mu}^{0}=1_{\Omega^{0}}$, with the boundary $\partial \Omega_{0}$ is a Jordan curve with $C^{\varepsilon+1}$ regularity, $0<\varepsilon<1$. In addition, we prove the local persistence of geometric structures as follows, equivalently the image $\Omega_{t}=\Psi_{\mu}\left(t, \Omega^{0}\right)$ keeps its initial regularity, with Ψ_{μ} is the flow generated by the velocity v_{μ},

$$
\left\{\begin{array}{l}
\partial_{t} \Psi_{\mu}(t, x)=v\left(t, \Psi_{\mu}(t, x)\right) \\
\Psi_{\mu}(0, x)=x
\end{array}\right.
$$

Our second task is to study the inviscid limi of the system $\left(\overline{\mathrm{NSB}_{\mu}}\right)$ towards the system $\overline{\mathrm{EB}}$) given by the so-called Euler Boussinseq

$$
\begin{cases}\partial_{t} v+v \cdot \nabla v+\nabla p=\theta \vec{e}_{2} & \text { if }(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{2} \tag{EB}\\ \partial_{t} \theta+v \cdot \nabla \theta=0 & \text { if }(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{2} \\ \operatorname{div} v=0, & \\ (v, \theta)_{\mid t=0}=\left(v^{0}, \theta^{0}\right) . & \end{cases}
$$

and we evaluate the rate of convergence between velocities, densities and vortices when the viscosity.

Let us briefly mention some results related to the classical Euler equation. J.Y. Chemin [11] showed that if the initial boundary $\partial \Omega_{0}$ is $C^{1+\varepsilon}$, for $\varepsilon \in(0,1)$ then $\partial \Omega_{t}$ is still of class $C^{1+\varepsilon}$. In this context, Hmidi and Zerguine [25] extended the result of [11] to the stratified Euler equation. For other connected subjects in different situations we refer the reader to [1, 12, 14, 13, 16, 19, 20, 35] and the references therein. On the other hand Meddour and Zerguine [35] explored the inviscid limit of the Navier-stokes Boussinesq system to the Stratifed Euler equation in the vortex patch setting. Inspired by the works [11, 25, 35], we are mainly interested by studying the Navier-Stokes Boussinesq equations. The first result deals with the local existence and the local persistence of geometric structures of the system NSB_{μ}

In particular, we have the following Theorem.
Theorem 1.1 Let $0<\varepsilon<1, a \in(1, \infty)$ and X_{0} be a family of admissible vector fields and v_{μ}^{0} be a free-divergence vector field in the sense that $\omega_{\mu}^{0} \in L^{a} \cap C^{\varepsilon}\left(X_{0}\right)$. Let $\theta_{\mu}^{0} \in L^{2} \cap C^{\varepsilon+1}\left(X_{0}\right)$ with $\nabla \theta_{\mu}^{0} \in L^{a}$, then for $\left.\mu \in\right] 0,1\left[\right.$ the system $\widehat{\left.\mathrm{NSB}_{\mu}\right]}$ admits a unique global solution

$$
\left(v_{\mu}, \theta_{\mu}\right) \in L^{\infty}([0, T] ; \mathrm{Lip}) \times L^{\infty}\left([0, T] ; \operatorname{Lip} \cap L^{2}\right)
$$

and

$$
\omega_{\mu} \in L^{\infty}\left([0, T] ; L^{a} \cap L^{\infty}\right)
$$

More precisely,

$$
\left\|\nabla v_{\mu}\right\|_{L_{L}^{\infty} L^{\infty}} \leq C_{0} e^{C_{0} t}
$$

Furthermore,

$$
\left\|\omega_{\mu}\right\|_{L_{t}^{\infty} C^{\varepsilon}\left(X_{t}\right)}+\widetilde{\|} X_{\lambda}\left\|_{L_{t}^{\infty} C^{\varepsilon}\left(X_{t}\right)}+\right\| \Psi_{\mu} \|_{L_{t}^{\infty} C^{\varepsilon}\left(X_{t}\right)} \leq C_{0} e^{\exp C_{0} t} .
$$

The second result of this paper deals with the inviscid limit for the systm NSB_{μ} to the stratified-Euler system. More precisely, we have

Theorem 1.2 Let $\left(v_{\mu}, \theta_{\mu}\right),(v, \theta)$, be the solution of the $\left(\mathrm{NSB}_{\mu}\right),(\mathrm{EB})$ respectively with the same initial data satisfies the condition of Theorem 1.1 such that $\omega_{\mu}^{0}=\omega^{0}=\mathbf{1}_{\Omega_{0}}$ where Ω_{0} is simply connected bounded domain. Then for all $t \geq 0, \mu \in] 0,1[$, we have

$$
\left\|v_{\mu}(t)-v(t)\right\|_{L^{2}}+\left\|\theta_{\mu}(t)-\theta(t)\right\|_{L^{2}} \leq C_{0}(\mu t)^{\frac{1}{2}} .
$$

2. TOOL BOX

2.1. Function spaces

$\operatorname{Let}(\chi, \varphi) \in \mathscr{D}\left(\mathbb{R}^{2}\right) \times \mathscr{D}\left(\mathbb{R}^{2}\right)$ be a radial cut-off functions be such that supp $\chi \subset\left\{\xi \in \mathbb{R}^{2}\right.$: $\|\xi\| \leq 1\}$ and $\operatorname{supp} \varphi(\xi) \subset\left\{\xi \in \mathbb{R}^{2}: 1 / 2 \leq\|\xi\| \leq 2\right\}$, so that

$$
\chi(\xi)+\sum_{q \geq 0} \varphi\left(2^{-q} \xi\right)=1
$$

Through χ and φ, the Littlewood-Paley or frequency cut-off operators $\left(\Delta_{q}\right)_{q \geq-1}$ and $\left(\dot{\Delta}_{q}\right)_{q \geq-1}$ are defined for $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$

$$
\Delta_{-1} u=\chi(\mathrm{D}) u, \Delta_{q} u=\varphi\left(2^{-q} \mathrm{D}\right) u \text { for } q \in \mathbb{N}, \quad \dot{\Delta}_{q} u=\varphi\left(2^{-q} \mathrm{D}\right) u \text { for } q \in \mathbb{Z} .
$$

where in general case $f(\mathrm{D})$ stands the pseudo-differential operator $u \mapsto \mathscr{F}^{-1}(f \mathscr{F} u)$ with constant symbol. The lower frequencies sequence $\left(S_{q}\right)_{q \geq 0}$ is defined for $q \geq 0$,

$$
S_{q} u \triangleq \sum_{j \leq q-1} \Delta_{j} u
$$

In accordance of the previous properties we derive the well-known decomposition of unity

$$
u=\sum_{q \geq-1} \Delta_{q} u, \quad u=\sum_{q \in \mathbb{Z}} \dot{\Delta}_{q} u
$$

The results currently available allow us to define the inohomogeneous Besov denoted $B_{p, r}^{s}$ (resp. $\left.\dot{B}_{p, r}^{s}\right)$ and defined in the following way.
Definition 2.1 For $(p, r, s) \in[1,+\infty]^{2} \times \mathbb{R}$, the inhomogeneous Besov spaces $B_{p, r}^{s}$ (resp. homogeneous Besov spaces $\dot{B}_{p, r}^{s}$) are defined by

$$
B_{p, r}^{s}=\left\{u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right):\|u\|_{B_{p, r}^{s}}<+\infty\right\}, \quad \dot{B}_{p, r}^{s}=\left\{u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)_{\mid \mathbb{P}}:\|u\|_{\dot{B}_{p, r}^{s}}<+\infty\right\}
$$

where \mathbb{P} refers to the set of polynomial functions in \mathbb{R}^{2} so that

$$
\|u\|_{B_{p, r}^{s}} \triangleq \begin{cases}\left(\sum_{q \geq-1} 2^{r q s}\left\|\Delta_{q} u\right\|_{L^{p}}^{r}\right)^{1 / r} & \text { if } r \in[1,+\infty[, \\ \sup _{q \geq-1} 2^{q s}\left\|\Delta_{q} u\right\|_{L^{p}} & \text { if } r=+\infty\end{cases}
$$

and

$$
\|u\|_{\dot{B}_{p, r}^{s}} \triangleq \begin{cases}\left(\sum_{q \in \mathbb{Z}} 2^{r q s}\left\|\dot{\Delta}_{q} u\right\|_{L^{p}}^{r}\right)^{1 / r} & \text { if } r \in[1,+\infty[, \\ \sup _{q \in \mathbb{Z}} 2^{q s}\left\|\dot{\Delta}_{q} u\right\|_{L^{p}} & \text { if } r=+\infty\end{cases}
$$

The Bernstein's inequalities are listed in the following lemma.
Lemma 2.2 There exists a constant $C>0$ such that for $1 \leq a \leq b \leq \infty$, for every function u and every $q \in \mathbb{N} \cup\{-1\}$, we have
(i) $\sup _{|\alpha|=k}\left\|\partial^{\alpha} S_{q} u\right\|_{L^{b}} \leq C^{k} 2^{q(k+2(1 / a-1 / b))}\left\|S_{q} u\right\|_{L^{a}}$.
(ii) $C^{-k} 2^{q k}\left\|\Delta_{q} u\right\|_{L^{a}} \leq \sup _{|\alpha|=k}\left\|\partial^{\alpha} \Delta_{q} u\right\|_{L^{a}} \leq C^{k} 2^{q k}\left\|\Delta_{q} u\right\|_{L^{a}}$.

As a consequence of Bernstein inequality, we have
Proposition 2.3 For $\left.\left(s, \widetilde{s}, p, p_{1}, p_{2}, r_{1}, r_{2}\right) \in \mathbb{R}^{2} \times\right] 1, \infty\left[\times[1, \infty]^{4}\right.$ with $\widetilde{s} \leq s, p_{1} \leq p_{2}$ and $r_{1} \leq r_{2}$, then we have
(i) $B_{p, r}^{s} \hookrightarrow B_{p, r}^{\widetilde{s}}$.
(ii) $B_{p_{1}, r_{1}}^{s}\left(\mathbb{R}^{2}\right) \hookrightarrow B_{p_{2}, r_{2}}^{s+2\left(1 / p_{2}-1 / p_{1}\right)}\left(\mathbb{R}^{2}\right)$.

Now, we state Bony's decomposition [8] which allows us to split formally the product of two tempered distributions u and v into three pieces. More precisely, we have.
Definition 2.4 For a given $u, v \in \mathscr{S}^{\prime}$ we have

$$
u v=T_{u} v+T_{v} u+\mathscr{R}(u, v)
$$

with

$$
T_{u} v=\sum_{q} S_{q-1} u \Delta_{q} v, \quad \mathscr{R}(u, v)=\sum_{q} \Delta_{q} u \widetilde{\Delta}_{q} v \quad \text { and } \quad \widetilde{\Delta}_{q}=\Delta_{q-1}+\Delta_{q}+\Delta_{q+1}
$$

The mixed space-time spaces are stated as follows.
Definition 2.5 Let $T>0$ and $(s, \beta, p, r) \in \mathbb{R} \times[1, \infty]^{3}$. We define the spaces $L_{T}^{\beta} B_{p, r}^{s}$ and $\widetilde{L}_{T}^{\beta} B_{p, r}^{s}$ respectively by :

$$
\begin{gathered}
L_{T}^{\beta} B_{p, r}^{s} \triangleq\left\{u:[0, T] \rightarrow \mathscr{S}^{\prime} ;\|u\|_{L_{T}^{\beta} B_{p, r}^{s}}=\left\|\left(2^{q s}\left\|\Delta_{q} u\right\|_{L^{p}}\right)_{\ell^{r}}\right\|_{L_{T}^{\beta}}<\infty\right\}, \\
\widetilde{L}_{T}^{\beta} B_{p, r}^{s} \triangleq\left\{u:[0, T] \rightarrow \mathscr{S}^{\prime} ;\|u\|_{\tilde{L}_{T}^{\beta} B_{p, r}^{s}}=\left(2^{q s}\left\|\Delta_{q} u\right\|_{L_{T}^{\beta} L^{p}}\right)_{\ell^{r}}<\infty\right\} .
\end{gathered}
$$

ICMA2021-3

The following result is a useful result in our approach. For the proof see [19, Corollary 1]
Corollary 2.6 Given $\varepsilon \in] 0,1\left[\right.$ and X be a vector field be such that $X, \operatorname{div} X \in C^{\varepsilon}$. Then for f be a Lipschitz scalar function $k \in\{1,2\}$ the following statement holds.

$$
\left\|\left(\partial_{k} X\right) \cdot \nabla f\right\|_{C^{\varepsilon-1}} \leq C\|\nabla f\|_{L^{\infty}}\left(\|\operatorname{div} X\|_{C^{\varepsilon}}+\|X\|_{C^{\varepsilon}}\right) .
$$

2.2. particle results

In this subsection, we give some preparatory results freely used throughout our analysis.

$$
\left\{\begin{array}{l}
\partial_{t} a+v \cdot \nabla a-\mu \Delta a=g \tag{1}\\
a_{\mid t=0}=a^{0}
\end{array}\right.
$$

We start with the persistence of Besov regularity for (1) whose proof may be found in [5]
Proposition 2.7 Let $(s, r, p) \in]-1,1\left[\times[1, \infty]^{2}\right.$ and v be a smooth vector field in free-divergence. Assume that $\left(a^{0}, g\right) \in B_{p, r}^{s} \times L_{\mathrm{loc}}^{1}\left(\mathbb{R}_{+} ; B_{p, r}^{s}\right)$. Then for every smooth solution a of 11 and $t \geq 0$ we have

$$
\|a(t)\|_{B_{p, r}^{s}} \leq C e^{C V(t)}\left(\left\|a^{0}\right\|_{B_{p, r}^{s}}+\int_{0}^{t} e^{-C V(\tau)}\|g(\tau)\|_{B_{p, r}^{s}} d \tau\right)
$$

with the notation

$$
V(t)=\int_{0}^{t}\|\nabla v(\tau)\|_{L^{\infty}} d \tau
$$

where $C=C(s)$ being a positive constant.
The statement of maximal regularity for (1] in mixed space-time Besov space is given by the following result. For the proof see [5].

Proposition 2.8 Let $\left.\left(s, p_{1}, p_{2}, r\right) \in\right]-1,1\left[\times[1, \infty]^{3}\right.$ and v be a free-divergence vector field belongs to $L_{l o c}^{1}\left(\mathbb{R}_{+} ;\right.$Lip) then there exists a constant $C \geq 0$, so that for every smooth solution a of (1) we have for all $t \geq 0$

$$
\mu^{\frac{1}{r}}\|a\|_{\tilde{L}_{t} B_{p_{1}, p_{2}}^{s+\frac{2}{p_{2}}}} \leq C e^{C V(t)}(1+\mu t)^{\frac{1}{r}}\left(\left\|a^{0}\right\|_{B_{p_{1}, p_{2}}^{s}}+\|g\|_{L_{t}^{1} B_{p_{1}, p_{2}}^{s}}\right) .
$$

Next, we have the classical Cálderon Zygmund inequality.
Proposition 2.9 Let $p \in] 1,+\infty\left[\right.$ and v be a free-divergence vector field whose vorticity $\omega \in L^{p}$. Then $\nabla v \in L^{p}$ and

$$
\|\nabla v\|_{L^{p}} \leq C \frac{p^{2}}{p-1}\|\omega\|_{L^{p}}
$$

with C being a universal constant.
At this stage, we define the anisotropic Hölder spaces as follows
Definition 2.10 Let $\varepsilon \in] 0,1\left[\right.$. A family of vector fields $X=\left(X_{\lambda}\right)_{\lambda \in \Lambda}$ is said to be admissible if and only if the following assertions are hold.
(i) Regularity: $\forall \lambda \in \Lambda \quad X_{\lambda}, \operatorname{div} X_{\lambda} \in C^{\varepsilon}$.
(ii) Non-degeneray : $I(X) \triangleq \inf _{x \in \mathbb{R}^{N}} \sup _{\lambda \in \Lambda}\left|X_{\lambda}(x)\right|>0$.

Setting

$$
\widetilde{\|} X_{\lambda}\left\|C^{\varepsilon} \triangleq\right\| X_{\lambda}\left\|_{C^{\varepsilon}}+\right\| \operatorname{div} X_{\lambda} \|_{C^{\varepsilon}} .
$$

Definition 2.11 Let $X=\left(X_{\lambda}\right)_{\lambda \in \Lambda}$ be an admissible family. The action of each factor X_{λ} on $u \in L^{\infty}$ is defined as the directional derivative of u along X_{λ} by the formula,

$$
\partial_{X_{\lambda}} u=\operatorname{div}\left(u X_{\lambda}\right)-u \operatorname{div} X_{\lambda} .
$$

The concept of anisotropic Hölder space, will be noted by $C^{\varepsilon}(X)$ is defined below.
Definition 2.12 Let $\varepsilon \in] 0,1[$ and X be an admissible family of vector fields. We say that $u \in$ $C^{\varepsilon}(X)$ if and only if :
(i) $u \in L^{\infty}$ and satisfies

$$
\forall \lambda \in \Lambda, \partial_{X_{\lambda}} u \in C^{\varepsilon-1}, \quad \sup _{\lambda \in \Lambda}\left\|\partial_{X_{\lambda}} u\right\|_{C^{\varepsilon-1}}<+\infty .
$$

(ii) $C^{\varepsilon}(X)$ is a normed space with

$$
\|u\|_{C^{\varepsilon}(X)} \triangleq \frac{1}{I(X)}\left(\|u\|_{L^{\infty}} \sup _{\lambda \in \Lambda} \widetilde{\|} X_{\lambda}\left\|_{C^{\varepsilon}}+\sup _{\lambda \in \Lambda}\right\| \partial_{X_{\lambda}} u \|_{C^{\varepsilon-1}}\right) .
$$

The next result play a major role in the proof of our main results. We refer the reader to [11].
Theorem 2.13 Let $\varepsilon \in] 0,1\left[\right.$ and $X=\left(X_{t, \lambda}\right)_{\lambda \in \Lambda}$ be a family of vector fields as in Definition 2.12. Let v be a free-divergence vector field such that its vorticity ω belongs to $L^{2} \cap C^{\varepsilon}(X)$. Then there exists a constant C depending only on ε, such that

$$
\begin{equation*}
\|\nabla v\|_{L^{\infty}} \leq C\left(\|\omega\|_{L^{2}}+\|\omega\|_{L^{\infty}} \log \left(e+\frac{\|\omega\|_{C^{\varepsilon}(X)}}{\|\omega\|_{L^{\infty}}}\right)\right) \tag{2}
\end{equation*}
$$

According Danchin's result [12], the class C_{Σ}^{ε} doesn't covers only the vortex patch of the type $\omega_{0}=\mathbf{1}_{\Omega_{0}}$, but also encompass the so-called general vortex. Specifically, we have.

Proposition 2.14 Let Ω_{0} be a $C^{1+\varepsilon}$-bounded domain, with $0<\varepsilon<1$. Then for every function $f \in C^{\varepsilon}$, we have

$$
f \mathbf{1}_{\Omega_{0}} \in C_{\Sigma}^{\varepsilon} .
$$

2.3. A priori estimates

In this part we shall give some a priori estimates for the velocity and the vorticity.
Proposition 2.15 Let v_{μ} be a smooth divergence-free vector field and θ_{μ} be a smooth solution of the equation (??). Then the following assertions are hold.
(i) For $p \in[1, \infty]$ and $t \geq 0$ we have

$$
\left\|\theta_{\mu}(t)\right\|_{L^{p}} \leq\left\|\theta_{\mu}^{0}\right\|_{L^{p}} .
$$

(ii) For $p \in[1, \infty]$ and $t \geq 0$ we have

$$
\left\|\nabla \theta_{\mu}(t)\right\|_{L^{p}} \leq\left\|\nabla \theta_{\mu}^{0}\right\|_{L^{p}} e^{C V_{\mu}(t)}
$$

$$
\text { with } V_{\mu}(t)=\int_{0}^{t}\left\|\nabla v_{\mu}(\tau)\right\|_{L^{\infty}} d \tau
$$

(iii) For $p \in[1, \infty]$ and $t \geq 0$ we have

$$
\left\|\omega_{\mu}(t)\right\|_{L^{p}} \leq C_{0} e^{C V_{\mu}(t)}
$$

with $V(t)=\int_{0}^{t}\left\|\nabla v_{\mu}(\tau)\right\|_{L^{\infty}} d \tau$.
Proof. (i)According to (1) we can express the density $\theta_{\mu}(t)$ by the initial value θ_{μ}^{0} and the flow Ψ as follows

$$
\theta_{\mu}(t, x)=\theta_{\mu}^{0}\left(\Psi^{-1}(t, x)\right) .
$$

Taking the L^{p}-norm to this equation and thanks to incompressible condition we infer that

$$
\begin{equation*}
\left\|\theta_{\mu}(t)\right\|_{L^{p}} \leq\left\|\theta_{\mu}^{0}\right\|_{L^{p}} \tag{3}
\end{equation*}
$$

(ii) Taking the partial derivative ∂_{j} to θ_{μ} - equation to obtain

$$
\partial_{t} \partial_{j} \theta+v \cdot \nabla \theta=-\partial_{j} \theta \cdot \nabla v,
$$

The L^{p}-estimate for the above gives

$$
\|\nabla \theta(t)\|_{L^{p}} \lesssim\left\|\nabla \theta_{0}\right\|_{L^{p}}+\int_{0}^{t}\|\nabla \theta(\tau)\|_{L^{p}}\|\nabla v(\tau)\|_{L^{\infty}} d \tau
$$

The Gronwall's inequality implies that

$$
\|\nabla \theta(t)\|_{L^{p}} \leq\left\|\nabla \theta_{0}\right\|_{L^{p}} e^{C V(t)}
$$

(iii) The L^{p}-estimate for the ω_{μ} equation gives

$$
\left\|\omega_{\mu}(t)\right\|_{L^{p}} \lesssim\left\|\omega_{\mu}^{0}\right\|_{L^{p}}+\int_{0}^{t}\|\nabla \theta(\tau)\|_{L^{p}}\|\nabla v(\tau)\|_{L^{\infty}} d \tau
$$

Combining the last two estimates we find the desired result
Proof of Theorem 1.1 The existence part of the theorem is classical and can be done for example by using a standard recursive method, see, e.g. [19]. We will control the quantities $\|\nabla v(t)\|_{L^{\infty}}$ and $\left\|\omega_{\mu}(t)\right\|_{C^{\varepsilon}(X)}$ for every $t \geq 0$. For this aim, appalling the operator $\partial_{X_{t}, \lambda}$ to ω_{μ} equation, we have

$$
\left(\partial_{t}+v \cdot \nabla-\mu \Delta\right) \partial_{X_{t}, \lambda} \omega_{\mu}=X_{t, \lambda} \cdot \nabla \partial_{1} \theta_{\mu}-\mu\left[\Delta, X_{t, \lambda}\right] \omega_{\mu} .
$$

For commutator $\mu\left[\Delta, X_{t, \lambda}\right] \omega_{\mu}$. From Bony's decomposition, we write

$$
\mu\left[\Delta, X_{t, \lambda}\right] \omega_{\mu}=\mathfrak{A}+\mu \mathfrak{B},
$$

with

$$
\mathfrak{A} \triangleq 2 \mu T_{\nabla X_{i, \lambda}^{i}} \partial_{i} \nabla \omega_{\mu}+2 \mu T_{\partial_{i} \nabla \omega_{\mu}} \nabla X_{t, \lambda}^{i}+\mu T_{\Delta X_{t, \lambda}^{i}} \partial_{i} \omega_{\mu}+\mu T_{\partial_{i} \omega_{\mu}} \Delta X_{t, \lambda}^{i} .
$$

and

$$
\mathfrak{B} \triangleq 2 \mathscr{R}\left(\nabla X_{t, \lambda}^{i}, \partial_{i} \nabla \omega_{\mu}\right)+\mathscr{R}\left(\Delta X_{t, \lambda}^{i}, \partial_{i} \omega_{\mu}\right)
$$

According to Theorem 3.38 page 162 in [5], we have

$$
\begin{equation*}
\left\|\partial_{X_{\lambda}} \omega_{\mu}\right\|_{L_{t}^{\infty} C^{\varepsilon-1}} \leq C e^{C V_{\mu}(t)}\left(\left\|\partial_{X_{0}, \lambda} \omega_{\mu}^{0}\right\|_{C^{\varepsilon-1}}+(1+\mu t)\|\mathfrak{A}\|_{L_{t}^{\infty} C^{\varepsilon-3}}+\mu\|\mathfrak{B}\|_{\tilde{L}_{l}^{1} C^{\varepsilon-1}}+\left\|\partial_{X_{\lambda}} \partial_{1} \theta_{\mu}\right\|_{L_{l}^{1} C^{\varepsilon-1}}\right) . \tag{4}
\end{equation*}
$$

From [5] 20] we have the following estimate

$$
\|\mathfrak{A}\|_{L_{t}^{\infty} C^{\varepsilon-3}} \leq C\|\omega\|_{L_{t}^{\infty} L^{\infty}}\left\|X_{\lambda}\right\|_{L_{l}^{\infty} C^{\varepsilon}} .
$$

Thanks to Proposition 2.15 we get

$$
\begin{equation*}
\|\mathfrak{A}\|_{L_{C}^{\infty} C^{\varepsilon-3}} \leq C_{0} e^{C V_{\mu}(t)}\left\|X_{\lambda}\right\|_{L_{t}^{\infty} C^{\varepsilon}} \tag{5}
\end{equation*}
$$

Again from [5] 20] we have the following estimate

$$
\begin{equation*}
\|\mathfrak{B}\|_{\tilde{L}_{l}^{1} C^{\varepsilon-1}} \leq C\|\omega\|_{\tilde{L}_{t}^{1} B_{\infty, \infty}^{2}}\left\|X_{\lambda}\right\|_{L_{l}^{\infty} C^{\varepsilon}} \tag{6}
\end{equation*}
$$

For the term $\left\|\omega_{\mu}\right\|_{\tilde{L}_{t}^{1} B_{\infty, \infty}^{2}}$, we use the Proposition 2.8 for $a=\omega_{\mu}, g=\partial_{1} \theta_{\mu}, r=1, s=0$, and $p_{1}=p_{2}=\infty$, we obtain

$$
\mu\left\|\omega_{\mu}\right\|_{\widetilde{L}_{i}^{1} B_{\infty, \infty}^{2}} \leq C e^{C V_{\mu}(t)}(1+\mu t)\left(\left\|\omega_{\mu}^{0}\right\|_{B_{\infty, \infty}^{0}}+\int_{0}^{t}\left\|\partial_{1} \theta_{\mu}(\tau)\right\|_{B_{\infty, \infty}^{0}} d \tau\right) .
$$

The embedding $L^{\infty} \hookrightarrow B_{\infty, \infty}^{0}$ implies that

$$
\mu\left\|\omega_{\mu}\right\|_{\tilde{L}_{i}^{1} B_{\infty, \infty}^{2}} \leq C e^{C V_{\mu}(t)}(1+\mu t)\left(\left\|\omega_{\mu}^{0}\right\|_{L^{\infty}}+\left\|\nabla \theta_{\mu}\right\|_{L_{i}^{1} L^{\infty}}\right) .
$$

Using Proposition 2.8 we obtain

$$
\mu\left\|\omega_{\mu}\right\|_{\tilde{L}_{i}^{1} B_{\infty, \infty}^{2}} \leq C_{0} e^{C V_{\mu}(t)}(1+\mu t)(1+t)
$$

Plugging the last estimate into (7), we infer that

$$
\begin{equation*}
\|\mathfrak{B}\|_{\tilde{L}_{L}^{1} C^{\varepsilon-1}} \leq C_{0} e^{C V_{\mu}(t)}(1+\mu t)(1+t)\left\|X_{\lambda}\right\|_{L_{l}^{\infty} C^{\varepsilon}} . \tag{7}
\end{equation*}
$$

To treat the quantity $\left\|\partial_{X_{\lambda}} \partial_{1} \theta_{\mu}\right\|_{L_{l}^{1} C^{\varepsilon-1}}$ we note that

$$
\begin{equation*}
\partial_{X_{\tau, \lambda}} \partial_{1} \theta_{\mu}=\partial_{1}\left(\partial_{X_{\tau, \lambda}} \theta_{\mu}\right)-\partial_{\partial_{1} X_{\tau, \lambda}} \theta_{\mu} . \tag{8}
\end{equation*}
$$

It follows, from taking the $C^{\varepsilon-1}-$ norm to this equation

$$
\left\|\partial_{X_{\tau, \lambda}} \partial_{1} \theta_{\mu}(\tau)\right\|_{C^{\varepsilon-1}} \lesssim\left\|\partial_{1}\left(\partial_{X_{\tau, \lambda}} \theta_{\mu}\right)(\tau)\right\|_{C^{\varepsilon-1}}+\left\|\left(\partial_{1} X_{\tau, \lambda}\right) \cdot \nabla \theta_{\mu}(\tau)\right\|_{C^{\varepsilon-1}} .
$$

Moreover using the fact $\partial_{1}: C^{\varepsilon} \longrightarrow C^{\varepsilon-1}$ is a continuous map and Corollary 2.6 we get

$$
\left\|\partial_{X_{\tau, \lambda}} \partial_{1} \theta_{\mu}(\tau)\right\|_{C^{\varepsilon-1}} \lesssim\left\|\partial_{X_{\tau, \lambda}} \theta_{\mu}(\tau)\right\|_{C^{\varepsilon}}+\left\|\nabla \theta_{\mu}(\tau)\right\|_{L^{\infty}} \tilde{\|} X_{\tau, \lambda} \|_{C^{\varepsilon}} e^{C V_{\mu}(t)}
$$

From Proposition 2.7 and Proposition 2.15 we find

$$
\begin{equation*}
\left\|\partial_{X_{\tau, \lambda}} \partial_{1} \theta_{\mu}(\tau)\right\|_{L_{t}^{1} C^{\varepsilon-1}} \leq\left\|\partial_{X(0)_{\lambda}} \theta_{\mu}^{0}\right\|_{C^{\varepsilon}} e^{C V_{\mu}(t)} t+C_{0}\left\|X_{\tau, \lambda}\right\|_{C^{\varepsilon}} e^{C V_{\mu}(t)} \tag{9}
\end{equation*}
$$

Summing (5), (7), (97) and punting them in (4), such that $\mu \in] 0,1[$ we infer that

$$
\begin{equation*}
\left\|\partial_{X_{t, \lambda}} \omega_{\mu}\right\|_{L_{t}^{\infty} C^{\varepsilon-1}} \leq C_{0} e^{C V_{\mu}(t)}(1+t)^{2} \widetilde{\|} X_{\lambda, t} \|_{L^{\infty} C^{\varepsilon}} . \tag{10}
\end{equation*}
$$

On other hand bound by using Proposition 2.7 we find

$$
\begin{equation*}
\left\|X_{t, \lambda}\right\|_{C^{\varepsilon}} \leq C e^{C V_{\mu}(t)}\left(\left\|X_{0, \lambda}\right\|_{C^{\varepsilon}}+\int_{0}^{t} e^{-C V_{\mu}(\tau)}\left\|\partial_{X_{\tau, \lambda}} v_{\mu}(\tau)\right\|_{C^{\varepsilon}} d \tau\right) \tag{11}
\end{equation*}
$$

We use the following result which its proof can be found in [5, 11]

$$
\left\|\partial_{X_{t, \lambda}} v_{\mu}(t)\right\|_{C^{\varepsilon}} \leq C\left(\left\|\nabla v_{\mu}(t)\right\|_{L^{\infty}} \widetilde{\|} X_{t, \lambda}\left\|_{C^{\varepsilon}}+\right\| \omega_{\mu}(t) \|_{C^{\varepsilon-1}}\right)
$$

ICMA2021-7

Thanks to (10), we find

$$
\begin{equation*}
\left\|\partial_{X_{t, \lambda}} v_{\mu}(t)\right\|_{C^{\varepsilon}} \leq C\left\|X_{t, \lambda}\right\|_{C^{\varepsilon}}\left(\left\|\nabla v_{\mu}(t)\right\|_{L^{\infty}}+C_{0} e^{C V_{\mu}(t)}(1+t)^{2}\right) \tag{12}
\end{equation*}
$$

Plunging (12) in (11), we get

$$
\left\|X_{t, \lambda}\right\|_{C^{\varepsilon}} \leq C e^{C V_{\mu}(t)}\left(\left\|X_{0, \lambda}\right\|_{C^{\varepsilon}}+C_{0} \int_{0}^{t} e^{-C V_{\mu}(\tau)}\left\|X_{\tau, \lambda}\right\|_{C^{\varepsilon}}\left(\left\|\nabla v_{\mu}(\tau)\right\|_{L^{\infty}}+(1+\tau)^{2}\right) d \tau\right)
$$

For the term $\left\|\operatorname{div} X_{t, \lambda}\right\|_{C^{\varepsilon}}$ by applying Proposition 2.7 to $\left(\partial_{t}+v \cdot \nabla\right) \operatorname{div} X_{t, \lambda}=0$, we get

$$
\begin{equation*}
\left\|\operatorname{div} X_{t, \lambda}\right\|_{C^{\varepsilon}} \leq C e^{C V_{\mu}(t)}\left\|\operatorname{div} X_{0, \lambda}\right\|_{C^{\varepsilon}} \tag{13}
\end{equation*}
$$

Combining the last two estimates we have

$$
\begin{equation*}
e^{-C V_{\mu}(t)} \widetilde{\|} X_{t, \lambda} \|_{C^{\varepsilon}} \leq C\left(\widetilde{\|} X_{0, \lambda}\left\|_{C^{\varepsilon}}+C_{0} \int_{0}^{t} e^{-C V_{\mu}(\tau)} \tilde{\|} X_{\tau, \lambda}\right\|_{C^{\varepsilon}}\left(\left\|\nabla v_{\mu}(\tau)\right\|_{L^{\infty}}+(1+\tau)^{2}\right) d \tau\right) \tag{14}
\end{equation*}
$$

The Gronwall's inequality gives

$$
\begin{equation*}
\widetilde{\|} X_{t, \lambda} \|_{C^{\varepsilon}} \leq C_{0} e^{C_{0} V_{\mu}(t)} e^{C_{0} t^{3}} \tag{15}
\end{equation*}
$$

Gathering (10) and (15), one has

$$
\left\|\partial_{X_{t, \lambda}} \omega_{\mu}(t)\right\|_{C^{\varepsilon-1}} \leq C_{0} e^{C_{0} V_{\mu}(t)} e^{C_{0} t^{3}}
$$

Moreover, from the last two estimates and Propitiation 2.15 we get

$$
\begin{equation*}
\left\|\partial_{X_{t, \lambda}} \omega_{\mu}(t)\right\|_{C^{\varepsilon-1}}+\left\|\omega_{\mu}(t)\right\|_{L^{\infty}} \widetilde{\|} X_{t, \lambda} \|_{C^{\varepsilon}} \leq C_{0} e^{C_{0} V_{\mu}(t)} e^{C_{0} t^{3}} \tag{16}
\end{equation*}
$$

Now, we recall that

$$
\begin{equation*}
\|\omega\|_{C^{\varepsilon}(X)} \triangleq \frac{1}{I\left(X_{t}\right)}\left(\|\omega\|_{L^{\infty}} \sup _{\lambda \in \Lambda} \widetilde{\|} X_{\lambda}\left\|_{C^{\varepsilon}}+\sup _{\lambda \in \Lambda}\right\| \partial_{X_{\lambda}} \omega \|_{C^{\varepsilon-1}}\right) . \tag{17}
\end{equation*}
$$

To control the term $I\left(X_{t}\right)$ we apply the derivative in time to the quantitity $\partial_{X_{0, \lambda}} \Psi$, it follows

$$
\left\{\begin{array}{l}
\partial_{t} \partial_{X_{0}, \lambda} \Psi(t, x)=\nabla v(t, \Psi(t, x)) \partial_{X_{0}, \lambda} \psi(t, x) \\
\partial_{X_{0, \lambda}} \Psi(0, x)=X_{0, \lambda} .
\end{array}\right.
$$

The time reversibilty of the previous equation and Gronwall's inequality ensure that

$$
\left|X_{0, \lambda}(x)\right| \leq\left|\partial_{X_{0, \lambda}} \Psi(t, x)\right| e^{V_{\mu}(t)} .
$$

From (ii) in Definition 2.10 we get

$$
\begin{equation*}
I\left(X_{t}\right) \geq I\left(X_{0}\right) e^{-V_{\mu}(t)}>0 \tag{18}
\end{equation*}
$$

Thanks to (16, (17) and (18), we have

$$
\begin{equation*}
\left\|\omega_{\mu}(t)\right\|_{C^{\varepsilon}\left(X_{t}\right)} \leq C_{0} e^{C_{0} t^{3}} e^{C_{0} V_{\mu}(t)} \tag{19}
\end{equation*}
$$

According to Theorem 2.13 and Proposition 2.15, we obtain

$$
\left\|\nabla v_{\mu}(t)\right\|_{L^{\infty}} \leq C\left(C_{0}+C_{0} \log \left(e+\frac{\left\|\omega_{\mu}(t)\right\|_{C^{\varepsilon}(X)}}{\left\|\omega_{\mu}(t)\right\|_{L^{\infty}}}\right)\right)
$$

The monotonicity of function $x \longmapsto \log \left(e+\frac{a}{x}\right)$ gives

$$
\left\|\nabla v_{\mu}(t)\right\|_{L^{\infty}} \leq C_{0}\left(C_{0}+C_{0} \log \left(e+\frac{\left\|\omega_{\mu}(t)\right\|_{C^{\varepsilon}(X)}}{\left\|\omega_{\mu}^{0}\right\|_{L^{\infty}}}\right)\right)
$$

It follows from (19) that

$$
\left\|\nabla v_{\mu}(t)\right\|_{L^{\infty}} \leq C_{0}\left((1+t)^{3}+\int_{0}^{t}\left\|\nabla v_{\mu}(\tau)\right\|_{L^{\infty}} d \tau\right)
$$

Again, Gronwall's inequality gives

$$
\begin{equation*}
\left\|\nabla v_{\mu}(t)\right\|_{L^{\infty}} \leq C_{0} e^{C_{0} t} \tag{20}
\end{equation*}
$$

Together with (19), we have

$$
\begin{equation*}
\left\|\omega_{\mu}(t)\right\|_{C^{\varepsilon}\left(X_{t}\right)} \leq C_{0} e^{\exp C_{0} t^{t}} \tag{21}
\end{equation*}
$$

To control he term Ψ_{μ} in $C^{\varepsilon}\left(X_{t}\right)$. we recall that $\partial_{X_{0, \lambda}} \Psi_{\mu}(t)=X_{t, \lambda} \circ \Psi_{\mu}(t)$. Thus, we get

$$
\left\|X_{t, \lambda} \circ \Psi_{\mu}(t)\right\|_{C^{\varepsilon}} \leq\left\|X_{t, \lambda}\right\|_{C^{\varepsilon}}\left\|\nabla \Psi_{\mu}(t)\right\|_{L^{\infty}}^{\varepsilon} \leq\left\|X_{t, \lambda}\right\|_{C^{\varepsilon}} e^{C V_{\mu}(t)}
$$

where, we have used $\left\|\nabla \Psi_{\mu}(t)\right\|_{L^{\infty}} \leq e^{C V_{\mu}(t)}$. Consequently,

$$
\begin{equation*}
\left\|\Psi_{\mu}(t)\right\|_{C^{\varepsilon}\left(X_{t}\right)} \leq C_{0} e^{\exp C_{0} t} \tag{22}
\end{equation*}
$$

The proof of Theorem 1.1 is finished.

3. INVISCID LIMIT

Proof of Theorem 1.2

Taking the difference between $\overline{\mathrm{NSB}_{\mu}}$ and (EB), by setting $U=v_{\mu}-v, \boldsymbol{\Theta}=\theta_{\mu}-\theta$ and $P=p_{\mu}-p$ we find out that the triplet (U, Θ, P) gouverns the following evolution system.

$$
\left\{\begin{array}{l}
\partial_{t} U+v_{\mu} \cdot \nabla U-\mu \Delta U=\Delta v-\nabla P+\Theta \vec{e}_{2}-U \cdot \nabla v \\
\partial_{t} \boldsymbol{\Theta}+v_{\mu} \cdot \nabla \boldsymbol{\Theta}=-U \cdot \nabla \boldsymbol{\theta} \\
\nabla \cdot U=0 \\
(U, \boldsymbol{\Theta})_{\mid t=0}=\left(U_{0}, \Theta_{0}\right)
\end{array}\right.
$$

Multiplying the first equation in the system (D_{μ} by U and integrating by part over \mathbb{R}^{2}, such that $\operatorname{div} v_{\mu}=\operatorname{div} v=0$ and Hölder's inequality ensure that
$\frac{1}{2} \frac{d}{d t}\|U(t)\|_{L^{2}}^{2}+\mu\|\nabla U(t)\|_{L^{2}}^{2} \leq \mu\|\nabla v(t)\|_{L^{2}}\|\nabla U(t)\|_{L^{2}}+\|\nabla v(t)\|_{L^{\infty}}\|U(t)\|_{L^{2}}+\|\Theta(t)\|_{L^{2}}\|U(t)\|_{L^{2}}$.
Young inequality implies that
$\frac{1}{2} \frac{d}{d t}\|U(t)\|_{L^{2}}^{2}+\mu\|\nabla U(t)\|_{L^{2}}^{2} \leq \frac{\mu}{2}\|\nabla v(t)\|_{L^{2}}^{2}+\frac{\mu}{2}\|\nabla U(t)\|_{L^{2}}^{2}+\left(\|U(t)\|_{L^{2}}^{2}+\|\Theta(t)\|_{L^{2}}^{2}\right)\left(\|\nabla v(t)\|_{L^{\infty}}+1\right)$.
Integrating in time this inequality, we find
$\|U(t)\|_{L^{2}}^{2}+\frac{\mu}{2}\|\nabla U(t)\|_{L^{2}}^{2} \leq\left\|U^{0}\right\|_{L^{2}}^{2}+\frac{\mu}{2}\|\nabla v\|_{L_{t}^{2} L^{2}}+\int_{0}^{t}\left(\|U(\tau)\|_{L^{2}}^{2}+\|\Theta(\tau)\|_{L^{2}}^{2}\right)\left(\|\nabla v(\tau)\|_{L^{\infty}}+1\right) d \tau$.
Similarly for Θ-equation, we have

$$
\frac{1}{2} \frac{d}{d t}\|\Theta(t)\|_{L^{2}}^{2} \leq\|\nabla \theta(t)\|_{L^{\infty}}\|U(t)\|_{L^{2}}^{2} .
$$

Integrating in time over $[0, t]$, it follows

$$
\begin{equation*}
\|\Theta(t)\|_{L^{2}}^{2} \leq\left\|\Theta^{0}\right\|_{L^{2}}^{2}+\int_{0}^{t}\|\nabla \theta(\tau)\|_{L^{\infty}}\|U(\tau)\|_{L^{2}}^{2} d \tau . \tag{24}
\end{equation*}
$$

Gathering (23) and 24, one has

$$
\begin{align*}
\Pi(t) & \lesssim \Pi(0)+\int_{0}^{t} \Pi(\tau)\left(1+\|\nabla \theta(\tau)\|_{L^{\infty}}+\|\nabla v(\tau)\|_{L^{\infty}}\right) d \tau \\
& +\mu\|\nabla v\|_{L_{L}^{2} L^{2}}, \tag{25}
\end{align*}
$$

with $\Pi(t)=\left\|v_{\mu}(t)-v(t)\right\|_{L^{2}}^{2}+\left\|\theta_{\mu}(t)-\theta(t)\right\|_{L^{2}}^{2}$, so Gronwall's inequality gives

$$
\Pi(t) \leq C e^{t+V_{\mu}(t)+V(t)+\|\nabla \theta\|_{L_{L}^{1} L^{\infty}}}\left(\Pi(0)+\mu\left\|\Delta v_{\mu}\right\|_{L_{t}^{2} L^{2}}\right) .
$$

Again, Hölder's inequality in time variable and using Proposition 2.9. we get

$$
\Pi(t) \leq C e^{t+V_{\mu}(t)+V(t)+\|\nabla \theta\|_{L_{1}^{1} L^{\infty}}}\left(\Pi(0)+(\mu t)\left\|\omega_{\mu}\right\|_{L_{l}^{\infty} L^{2}}\right)
$$

Thanks to Theorem and Proposition 2.15 we find that

$$
\Pi(t) \leq C_{0} e^{C_{0} t}(\mu t)
$$

Consequently,

$$
\left\|v_{\mu}(t)-v(t)\right\|_{L^{2}}+\left\|\theta_{\mu}(t)-\theta(t)\right\|_{L^{2}} \leq C_{0}(\mu t)^{\frac{1}{2}} .
$$

This completes the proof of Theorem 1.2

4. REFERENCES

[1] H. Abidi and R. Danchin : Optimal bounds for the inviscid limit of Navier-Stokes equations. Asymptot. Anal., 38(1), 35-46 (2004).
[2] H. Abidi and T. Hmidi : On the global well-posedness for Boussinesq System. J. Diff. Equa. 233 (1), 199-220 (2007).
[3] H. Abidi and P. Zhang : On the global well-posedness of $2 D$ Boussinesq system with variable viscosity. Adv. Math. 305, 1202-1249 (2017)
[4] J. L. Boldrini, B. Climent-Ezquerra, M. D. Rojas-Medar and M. A. Rojas-Medar : On an iterative method for approximate solutions of a generalized Boussinesq model. Journal of Mathematical Fluid Mechanics volume 13, 33-53 (2011).
[5] H. Bahouri, J.-Y. Chemin and R. Danchin : Fourier analysis and nonlinear partial differential equations. Springer-Verlag Berlin Heidelberg (2011).
[6] J. T. Beale, T. Kato and A. Majda : Remarks on the breakdown of smooth solutions for the 3D-Euler equations. Commun. Math. Phys. 94, 61-66 (1984).
[7] A. Bertozzi and P. Constantin : Global regularity for vortex patches. Comm. Math. Phys. 152 (1), 19-28 (1993).
[8] J.-M. Bony : Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. de l'Ecole Norm. Sup. (14), 209-246 (1981).
[9] J. R. Cannon and E. Dibenedetto : The Initial Value Problem for the Boussinesq Equations with Data in L^{p}. Lecture Notes in Math. 771, Berlin-Heidelberg-New York : Springer, 129-144 (1980).
[10] D. Chae : Global regularity for the 2D-Boussinesq equations with partial viscous terms. Advances in Math. 203 (2), 497-513 (2006).
[11] J.-Y. Chemin : Perfect incompressible Fluids. Oxford University Press (1998).
[12] R. Danchin : Poches de tourbillon visqueuses. Math. Pures Appl. (9) 76, 609-647 (1997).
[13] R. Danchin and M. Paicu : Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data. Comm. Math. Phys. 290, 1-14 (2009).
[14] R. Danchin and X. Zhang : Global persistence of geometrical structures for the Boussinesq equation with no diffusion. Communications in Partial Differential Equations, 42(1), 68-99 (2017).
[15] N. Depauw : Poche de tourbillon pour Euler 2D dans un ouvert à bord. J. Math. Pures Appl. (9) 78, no. 3, 313-351 (1999).
[16] F. Fanelli : Conservation of geometric structures for non-homogeneous inviscid incompressible fluids. Comm. Partial Differential Equations 37(9), 1553-1595 (2012).
[17] D. Francesco : Global weak solutions for Boussinesq system with temperature dependent viscosity and bounded temperature. Adv. Differential Equations, 21 (11-12) : 1001-1048 (2015).
[18] B. Guo : Spectral method for solving two-dimensional Newton-Boussinesq equation. Acta Math. Appl. Sinica 5, 27-50 (1989).
[19] Z. Hassainia and T. Hmidi : On the inviscid Boussinesq system with rough initial data. J. Math. Anal. Appl. 430, no. 2, 777-809 (2015).
[20] T. Hmidi : Régularité höldérienne des poches de tourbillon visqueuses. J. Math. Pures Appl. (9) 84, no. 11, 1455-1495 (2005).
[21] T. Y. Hou and C. Li : Global well-Posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems. Series A, 12 (1), 1-12 (2005).
[22] T. Hmidi and S. Keraani : On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv. Differential Equations 12 (4), 461-480 (2007).
[23] T. Hmidi, S. Keraani and F. Rousset : Global well-posedness for an Euler-Boussinesq system with critical dissipation. Commun. Part. Diff. Eqs. 36(3), 420-445, (2011).
[24] T. Hmidi and M. Zerguine : On the global well-posedness of the Euler-Boussinesq system with fractional dissipation. Physica D. 239, 1387-1401 (2010).
[25] T. Hmidi and M. Zerguine : Vortex patch for stratified Euler equations. Commun. Math. Sci.Vol. 12, no. 8, 1541-1563 (2014).
[26] T. Hmidi and S. Keraani : Inviscid limit for the two-dimensional Navier-Stokes equation in a critical Besov space.Asymptotic Analysis, 53 (3), 125-138 (2007)
[27] T. Hmidi, S. Keraani and F. Rousset : Global well-posedness for a Navier-StokesBoussinesq system with critical dissipation. J. Differential Equations 249, 2147-2174 (2010).
[28] T. Hmidi and F. Rousset : Global well-posedness for the Euler-Boussinesq system with axisymmetric data. J. Funct. Anal. 260 (3), 745-796 (2011).
[29] A. Larios, E. Lunasin and E. S. Titi : Global well-posedness for the $2 d$-Boussinesq system without heat diffusion and with either anisotropic viscosity or inviscid voigt- α regularization. Journal of Differential Equations, 255, 2636-2654 (2013).
[30] P.-G. Lemarié-Rieusset : Recent Developments in the Navier Stokes Problem. Chapman \& Hall/CRC Research Notes in Mathematics, 431, Chapman \& Hall/CRC, Boca Raton, FL, 2002.
[31] D. Li and X. Xu : Global well-posedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity. Dyn. Partial Differ. Equ. 10 (3), 255-265 (2013).
[32] H. Li, R. Pan and W. Zhang : Initial boundary value problem for $2 D$ Boussinesq equations with temperature-dependent diffusion. J. Hyperbolic Differ. Equ. 12(3), 469-488 (2015).
[33] S. A. Lorca and J. L. Boldrini : The initial value problem for a generalized Boussinesq model : regularity and global existence of strong solutions. Mat. Contemp. 110, 71-94 (1996).
[34] S. A. Lorca and J. L. Boldrini : The initial value problem for a generalized Boussinesq model. Nonlinear Anal., 36 (4), 457-480 (1999).
[35] H. Meddour : Local stability of geometric structures for Boussinesq system with zero viscosity. Accepted in
[36] H. Meddour and M. Zerguine : Optimal rate of convergence in stratified Boussinesq system. Dynamics of PDE, Vol. 15, no. 4, 235-263 (2018).
[37] M. Paicu and N. Zhu : On the Yudovitch's type solutions for $2 D$ Boussinesq system with thermal diffusivity. Discrete and Continuous Dynamical Systems. In press. ffhal02500672f.
[38] J. Pedlosky : Ocean circulation theory. Springer-Verlag Berlin Heidelberg 1996.
[39] C. Miao and L. Xue : On the global well-posedness of a class of Boussinesq- NavierStokes systems. arXiv :0910.0311v1.
[40] P. Serfati : Une preuve directe d'existence globale des vortex patches 2D. C. R. Acad. Sci. Paris Sér. I Math, 318, No. 6, 515-518 (1994).
[41] Y. Sun and Z. Zhang : Global regularity for the initial-boundary value problem of the $2 D$ Boussinesq system with variable viscosity and thermal diffusivity. J. Differential Equations, 255 (6) : 1069-1085 (2013).
[42] T. Tao and L. Zhang : Hölder continuous solutions of Boussinesq equation with compact support. J. Funct. Anal., 272 (10), 4334-4402 (2017).
[43] H. von Tippelkirch : Uber Konvektionszeller insbesondere in flussigen Schefel. Beitrage Phys. Atmos., 20, 37-54 (1956).
[44] S. Wang and Z. Zhang : Global well-posedness for the $2 D$ Boussinesq system with the temperature-dependent viscosity and thermal diffusivity. Adv. Math. 228, 43-62 (2011).
[45] J. Wu and X. Xu. Well-posedness and inviscid limits of the Boussinesq equations with fractional Laplacian dissipation. Nonlinearity, 27 (9), 2215-2232 (2014).
[46] J. Wu, X. Xu, L. Xue and Z. Ye. Regularity results for the $2 D$ Boussinesq equations with critical or supercritical dissipation. Commun. Math. Sci. 14 (7), 1963-1997 (2016).
[47] E. Weinan and C. Shu : Small-scale structures in Boussinesq convection. Phys. Fluids 6, 49-58 (1994).
[48] V. I. Yudovich : Non-stationnary flows of an ideal incompressible fluid. Zhurnal Vych Matematika, 3, 1032-106 (1963).
[49] M. Zerguine : The regular vortex patch for stratified Euler equations with critical fractional dissipation. J. Evol. Equ. 15, 667-698 (2015).

