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ABSTRACT

This paper deals with the local well-posedness in time for the Navier-Stokes Boussinesq equa-
tions in two dimensions in the framework of a smooth vortex patch. Furthermore, we provide the
inviscid limit for the velocity and the density.

1. INTRODUCTION

The system of the Navier-Stokes Boussinseq with viscosity pt > 0 given by the coupled
equation,

Ovu +vy Vv — AV, +Vp =0, if (1,x) € Ry xR?,
010y +vyu VO, =0 if (1,x) € Ry xR?,
divvy =0,

(Vi O)j—0 = (V1 6u°).-

(NSBy,)

where v = (v1 , vz)IR2 refers to the velocity vector filed located in position x € R? at a time ¢
which assumed to be incompressible, the scalar function 8(¢,x) € R, denotes the temperature
or the density, p(t,x) € R is the pressure which relates v and 6 through an elliptic equation. 6;,&,
is the buoyancy force in the direction &, = (0, 1).

Taking the curl operator to the momentum equation in (NSB) we get

dywy +vy - Vo — uAwy = 6y,
0 0u+vy -V, =0, (VDy)
(B, @)1= = (67, ).

Our goal is to prove that the system is locally well-posed whenever the initial vor-
ticity is a smooth vortex patch, that is a)ﬂ = 1o, with the boundary d€) is a Jordan curve with
CE*+! regularity, 0 < € < 1. In addition, we prove the local persistence of geometric structures as
follows, equivalently the image Q, = ¥, (1, Q0 keeps its initial regularity, with ¥y, is the flow
generated by the velocity v,

{ Oy (1,x) = v(1, ¥y (1,x)),
¥, (0,x) =x.

Our second task is to study the inviscid limi of the system (NSB,) towards the system (EB)
given by the so-called Euler Boussinseq

ov+v-Vv+Vp=02, if(r,x) e R, xR?,
%0+v-VO =0 if (,x) € Ry x R2,
divy =0,

(V79)\t:O = (Voveo)'

(EB)
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and we evaluate the rate of convergence between velocities, densities and vortices when the
viscosity.

Let us briefly mention some results related to the classical Euler equation. J.Y. Chemin [11]
showed that if the initial boundary 9Qq is C' ¢, for & € (0, 1) then d, is still of class C' €. In
this context, Hmidi and Zerguine [25] extended the result of [11] to the stratified Euler equation.
For other connected subjects in different situations we refer the reader to [1} 12} [14} [13} 16}
19,1201 135] and the references therein. On the other hand Meddour and Zerguine [35]] explored
the inviscid limit of the Navier-stokes Boussinesq system to the Stratifed Euler equation in the
vortex patch setting. Inspired by the works [[11},25|35]], we are mainly interested by studying the
Navier-Stokes Boussinesq equations. The first result deals with the local existence and the local
persistence of geometric structures of the system [NSB]

In particular, we have the following Theorem.

Theorem 1.1 Let 0 < € < 1,a € (1,00) and X be a family of admissible vector fields and vﬂ be
a free-divergence vector field in the sense that wﬂ € L*NCE(Xy). Let 93 € L2NCET(Xo) with
Veﬁ € L*, then for u €0, 1] the system (NSB) admits a unique global solution

(vu,6u) € L™ ([0,T];Lip) x L~ ([0, T];LipﬂLz).

and
oy € L7([0,T;LNL”).
More precisely,
IVl < Coe™".
Furthermore,

i I
loullizce ) + 1Xallzzce ) + 1 ¥ullmce(x) < Coe™P".

The second result of this paper deals with the inviscid limit for the systm (NSBy) to the
stratified-Euler system. More precisely, we have

Theorem 1.2 Let (vy,60y), (v,0), be the solution of the m (EB) respectively with the same
initial data satisfies the condition of Theorem such that 0y = o = 1q, where Q is simply
connected bounded domain. Then for all t > 0,1 €]0, 1], we have

1
Ve () = v(©)ll2 + 1|6 (r) = 8 (1)l 2 < Co(pr)>-
2. TOOL BOX

2.1. Function spaces

Let(x, ®) € 2(R?) x P(R?) be a radial cut-off functions be such that supp x C {& € R? :
€1l < 1} and supp @(&) € {§ € R?:1/2 < [|€]| < 2}, so that

X&)+ ) 0(27) =1.

4>0

Through x and ¢, the Littlewood-Paley or frequency cut-off operators (Aq)>—1 and (Ag)>_1
are defined for u € .7/ (R?)

A_ju=x(D)u, Aqu= @(27D)u for g€ N, Aju= @2 ID)u for q € Z.

where in general case f(D) stands the pseudo-differential operator u — .% ~ ! ( f.%u) with constant
symbol. The lower frequencies sequence (S, ),>0 is defined for ¢ > 0,

A
Squ: Z Aju.
Jj<q—1
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In accordance of the previous properties we derive the well-known decomposition of unity

u= Z Agu, u= ZAqu.

g>—1 qeZ

The results currently available allow us to define the inohomogeneous Besov denoted By, . (resp.
B;r) and defined in the following way.

Definition 2.1 For (p,r,s) € [1,4]? x R, the inhomogeneous Besov spaces Bj, . (resp. homo-
geneous Besov spaces B;‘;#r ) are defined by

X 2y . 3 2 .
By, ={ue S (R%):|lulg;, <+eo}, By, ={ucS"R)p: ullg <o},
where P refers to the set of polynomial functions in R? so that
rqs r 1/r .
[P (Zquﬂ I\Aqul\u> ifre[l+el,
| supge 20 Agully - ifr=en

and

- Ir
1] s & ():quszAq”HZJ ifr € [l,+ee],
supyez, 29| Aqul Lr if r = oo,

p.r

The Bernstein’s inequalities are listed in the following lemma.

Lemma 2.2 There exists a constant C > 0 such that for 1 < a <b < oo, for every function u and
every g € NU{—1}, we have

@) sup|js 0% Squll s < Ckpa(k+2(1/a—1/b)) (1Sl s
(i) CF2%|Agul| e < supjgy [|0%AgulLe < CF2%|[Agu]| 1.
As a consequence of Bernstein inequality, we have

Proposition 2.3 For (s,5, p, p1,p2,r1,72) € R2x]1,00[x [1,00]* with 5 < s, py < pp and r; < s,
then we have

@) B, — B,

s s +2(1/p2—1

(i) BY, ,, (R2) < By /P 1/m) (R2),

Now, we state Bony’s decomposition [8] which allows us to split formally the product of two
tempered distributions u and v into three pieces. More precisely, we have.

Definition 2.4 For a given u,v € .9’ we have
wv =Tyw+Tou+%(u,v),
with _ _
T,v= ZSq_l ubgv, Z(u,v)= ZA‘I"A(JV and Ay =Ay 1 +A;+Apq1.
q q
The mixed space-time spaces are stated as follows.

Definition 2.5 Let T > 0 and (s,,p,r) € R x [1,]3. We define the spaces L[TiBf,l, and ZI;BISW
respectively by :

LI;B;J = {u :0,T] — 7 Hu”L?B;J = H(quHA‘lu||L")Z"HL§ < oo},

178y, 2 {u: 0.7) = 7 lullzgy, = (2 1Agulyp,,) 0 <)
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The following result is a useful result in our approach. For the proof see [[19, Corollary 1 ]

Corollary 2.6 Given € €]0,1[ and X be a vector field be such that X ,divX € CE. Then for f be
a Lipschitz scalar function k € {1,2} the following statement holds.

19kX) -V fllce-r < CIV A= (|divX [|ce + [1X]|ce)-
2.2. particle results
In this subsection, we give some preparatory results freely used throughout our analysis.

{ dia+v-Va—lAa =g, n

a‘f:o =a.

We start with the persistence of Besov regularity for (I) whose proof may be found in [3]

Proposition 2.7 Let (s,r,p) €] — 1, 1[x[1,0]? and v be a smooth vector field in free-divergence.
Assume that (a°,g) € B}, % Llloc(]R%B;,,r). Then for every smooth solution a of (I) and t > 0
we have

pr — P

°t
a1y, <€ (16l + [ Dg(x) oy ).
with the notation
t
V() = [ 19(@)li-ax,

where C = C(s) being a positive constant.

The statement of maximal regularity for (I) in mixed space-time Besov space is given by the
following result. For the proof see [5]].

Proposition 2.8 Let (s, py,p2,r) €] — 1,1[x[1,]> and v be a free-divergence vector field be-
longs to Lllo (R Lip) then there exists a constant C > 0, so that for every smooth solution a of
(m) we have for all t > 0

1 cv L0
wiall, 2 <CeVO0+un7 (1), +lgllm | )-

tPp1.py

Next, we have the classical Célderon Zygmund inequality.

Proposition 2.9 Let p €]1,+oo[ and v be a free-divergence vector field whose vorticity @ € L”.
Then Vv € LP and

2
19l < €2 o]us
p—1

with C being a universal constant.

At this stage, we define the anisotropic Holder spaces as follows

Definition 2.10 Ler € €]0,1[. A family of vector fields X = (X3 ). is said to be admissible if
and only if the following assertions are hold.

(i) Regularity :VA € A X, ,divX, € CE.
(i) Non-degeneray : I(X) £ inf gy supycp | X3 (x) |> 0.
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Setting
X 11C€ = [ Xz [lcs + [|divX [|ce-

Definition 2.11 Let X = (X} ),ca be an admissible family. The action of each factor X) on
u € L™ is defined as the directional derivative of u along X, by the formula,

Ix, u = div(uXy ) — udivX) .
The concept of anisotropic Hélder space, will be noted by C¢(X) is defined below.

Definition 2.12 Let € €]0,1[ and X be an admissible family of vector fields. We say that u €
C4(X) if and only if :

(i) u € L™ and satisfies

VA €A dx,u e Cgil, sup || dx, ul|ce-1 < +ee.
AEA

(ii) C%(X) is a normed space with

A

1 ~
leles o) = 7y IIMHLNEERHXAHCS+Zig\ll9xxullce—l ~

The next result play a major role in the proof of our main results. We refer the reader to [11)].

Theorem 2.13 Let ¢ €]0,1[and X = (X, 3 )pep be a family of vector fields as in Definition

Let v be a free-divergence vector field such that its vorticity o belongs to L* NCE (X). Then there
exists a constant C depending only on €, such that

lollce
[Vv- <€ (nwuLzﬂ\wum log (e+ ﬂ)) @

o]

According Danchin’s result [12], the class C§ doesn’t covers only the vortex patch of the type
p = 1g,, but also encompass the so-called general vortex. Specifically, we have.

Proposition 2.14 Let Q) be a C'€ —bounded domain, with 0 < € < 1. Then for every function
f € CE, we have
flg, € Cg.

2.3. A priori estimates
In this part we shall give some a priori estimates for the velocity and the vorticity.

Proposition 2.15 Let vy, be a smooth divergence-free vector field and 6y, be a smooth solution
of the equation (??). Then the following assertions are hold.

(i) For p €[1,00] andt > 0 we have
18 () l2r < 1162l2-
(ii) For p € [1,0] andt > 0 we have
VO ()l < IV s 0).

with V(1) = o [Vvu (o) -d.
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(iii) For p € [1,o0] and t > 0 we have
| (1)||1r < CoeVu).
withV(t) = [5[|Vvu(7)|=d.

Proof. (i)According to (T) we can express the density 8 (r) by the initial value 68 and the flow
¥ as follows
eﬂ(t7x) = 93(\{’71 (tvx))'

Taking the LP-norm to this equation and thanks to incompressible condition we infer that

16, (1) llr < [169]12- 3)

(i) Taking the partial derivative d; to 6, — equation to obtain
8,();9 +v-VO = —(9_,‘9 -V,

The LP —estimate for the above gives

1
IV6) 1> < IV60llr+ [ 1960 |Vr(0)]u-de.
The Gronwall’s inequality implies that
IVO@)llzr < [[Vollre .

(iii) The L” —estimate for the @y, equation gives

1
lou()llr < Hwﬁllu+/0 IVO()l|r [IVV(7)[-d7.

Combining the last two estimates we find the desired result . m

Proof of Theorem |'1Lf| The existence part of the theorem is classical and can be done for
example by using a standard recursive method, see, e.g. [19]. We will control the quantities
[Vv(t)||z= and [|@y (t)[|ce(x) for every t > 0 . For this aim, appalling the operator dx ; to @y
equation, we have

(0 +v-V—uA)dy 30 =X, 5 - V10 — U[AX, |0y
For commutator it[A, X; ; ]y . From Bony’s decomposition, we write
“[Avxl,l}wﬂ =A+ ”%7

with
A2 2uTyyi VO +2UTyva, VX, ) + UTayi 00+ 1T50,AX; ;.

and
BL2R(VX] 0V ou) +R(AX] ), ioy).

According to Theorem 3.38 page 162 in [3] , we have

195, @ull e 1 < Ce ) (10, 2 0f e+ (14 10) [ s+ 1B g + 195, 91Ol et )-
C))

From [5, 20] we have the following estimate

2] fmces < Cllo| L= 1 X5 | oo -
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Thanks to Proposition[2.13} we get
[194]| ce-s < Coe™ 01X, | e ®)
Again from [5,20]] we have the following estimate
1Bllzicer <Cllollpg I1Xallzrce- (6)

For the term ”“’#HZ}BQ; we use the Proposition 2.8] for a = @y,g = 9,6,,r = 1,5 = 0, and
p1 = p2 = oo, we obtain

wloallgyg < CE O+ ) (@l + /O 12100 (2) ).
The embedding L™ — Bg,_’m implies that
oz <CE O+ un) (@l +[1V0ull.-)-
Using Proposition [2:8] we obtain
o]z < Coc™ O (1) (1+1)
Plugging the last estimate into (7), we infer that
19817101 < Coe™ O (14 pt) (1+1)[|Xp [l e ©)
To treat the quantity ||dx, d16u[;)ce-1 we note that
9x,, 010y = 91 (9x,, Ou) — Ja,x, , Ou- (8)
It follows , from taking the C¥~!— norm to this equation
19, 916 (T)llce—1 < 1101 (9., O) (D)l et + 11 (D1Xe ) - VO ()| o1
Moreover using the fact d; : C¢ — C&~ ! is a continuous map and Corollary we get
19%..,91 6 (D)lce-1 S 10x. 5 O () e + 1V 8y (2) - [Xe 2 [lcee ™).
From Proposition [2.7)and Proposition 2.13} we find
9%, 10u (D)l 1ce1 < [[9x(0), 09l cee¥u Wt + Col1 X 1 [l ce e Q)
Summing (3),(7),(@) and punting them in @),such that u €]0, 1[ we infer that
110, , @ul=ce-1 < Coe™ (1 +0)21Xp llce- 10)
On other hand bound by using Proposition[2.7] we find
1,2 lex < €0 (X s + [ e oy, v ()] o). (11)
We use the following result which its proof can be found in [S} [11]

1%, vu ()llce < C(IVvuO)ll=[1X, 2 llce + o (1)l ce-1).-
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Thanks to (I0), we find
9%, v Olles < T ller (190 1+ Co ™+ (14-4)2). (12)
Plunging (T2) in{TT), we get
¥l < CE0 (1ol +o | eSO THealler (199 ()= + (14 91 ate).
For the term [|divX; ; [|ce by applying Propositionto (0 +v-V)divX, 4 =0, we get
[divX, 5 [lce < eV D]|divXq ; ||ce. (13)

Combining the last two estimates we have

~ ~ 1 ~
e7CVu(t)HXZ,/1HCs SC(HX(),AHCE +C()/ e*CVu(T)”XT’/lHCs (”VV;L(T)HLN-F(]—I—T)z)d’().

JO
14
The Gronwall’s inequality gives
X, 2 llce < CoeCoVulD o, (15)
Gathering (T0) and (T3), one has
Oy, 0y (1)l e < CoeCoVul) o’
Xr.l u C =40
Moreover, from the last two estimates and Propitiation 2.13] we get
ing 3
195, @ (1) e + @ (1) 2= [1X 2l ce < Coe @Y. (16)
Now, we recall that
o] 2 1 (Ile [1X3 lce + sup [|x; ]| > (17
ce(x) = L= sup Allce sup X ce-1 |-
® 1 (Xt ) AeA AEA g
To control the term 1(X;) we apply the derivative in time to the quantitity dx, , ¥, it follows
{ alan,llP(tvx) = Vv(tvly(t7x))an,7L l//(t7x)
Ix,, ¥(0,x) = X 2.-
The time reversibilty of the previous equation and Gronwall’s inequality ensure that
[X0.1.(x)| < |9, , B(z,x)|e" ).
From (ii) in Definition2:I0] we get
1(X) > 1(Xo)e 1) > 0. (18)
Thanks to (I6), (I7) and (I8), we have
0 ()] ey < CoeCor” CoVa(®) (19)
u ()lex) < Coe™*

According to Theorem [2.13|and Proposition[2.13], we obtain

[l @u ()]l ce x)
a0l <y coog (e 12O
Vv ()l (0 0708 l| @u ()]
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The monotonicity of function x — log(e + %) gives
|y ()| ce
Vv (®)|lz= < Co | Co+Colog g+‘”3& )
l| g |z~

It follows from (T9) that

t
1V )l < o107+ [ 1904 (3)e-r).
Again, Gronwall’s inequality gives
Vv ()= < Coe™". (20)

Together with (T9), we have
lloo ()lee(x,) < Coe™P " @

To control he term ¥y, in C¥(X; ). we recall that dx, , Wy (t) = X; 3 o ¥ (¢). Thus, we get

c
1% 0 W (0)llee < [1X1 e e,

e IV (0)II7- < 11X 2

where, we have used || V¥ (1)]],.. < ¢“Vu() Consequently,
¥y (1) llce(x;) < Coe™P". (22)

The proof of Theorem [I1]is finished.

3. INVISCID LIMIT

Proof of Theorem [1.2]
Taking the difference between and (EB), by setting U = vy —v,0 = 6, — 6 and
P = py — p we find out that the triplet (U, ®, P) gouverns the following evolution system.

U +vy-VU — uAU = Av — VP + @, —U - Vv,

%0+, VO =—U-V6,

V~U:%, (Dy)
(U,0) =0 = (Up, Op).

Multiplying the first equation in the system @ by U and integrating by part over R2, such that
divvy, = divv = 0 and Holder’s inequality ensure that

1d

EEHU(I)Hiz VU @172 < VYO 2 VU @)l + IV = [0 0] 2 + 100 21U @) 2-

Young inequality implies that

1d

EEHU([)

7 7
B +RIVUOIE: < SIVv )13+ SIVU @12+ IV 12+ 100) 12 ) (I9v0)ll-+1))-
Integrating in time this inequality ,we find
I I !
JU @)1+ SIVUOIE: < 101+ 519Vl 202+ /O (@) 12 +10@)E: ) (IV9(©)llz-+1) dx.

(23)
Similarly for ®—equation, we have
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1d
2dt
Integrating in time over [0,7], it follows

1O()II72 < IVO@)l|= U ()17

1
103 < 18713+ [ IV6(0) - U (7). e
Gathering (23) and (24), one has

0 S 1)+ [ 10 (14196 + 999 - )

ol )
with TI(1) = [Jvy (1) = v(£)||2, + |6 () — 6(¢)]|2.. so Gronwall’s inequality gives

() < Cet+Vu(t)+V(t)+HV6HLr,Lm(

T1(0) + | Ava 22 )-
Again, Holder’s inequality in time variable and using Proposition[Z.9] we get

II(r) < C

OOV (1100) + () ol )

Thanks to Theorem and Proposition [2.15] we find that
II(t) < Coe“' (ut).

Consequently,
1
Vi (1) =v(@)l 2 + 116 (1) = B(1) [ 2 < Co(ur)>.
This completes the proof of Theorem T2}

4. REFERENCES

[1] H. Abidi and R. Danchin : Optimal bounds for the inviscid limit of Navier-Stokes equa-
tions. Asymptot. Anal., 38(1), 35-46 (2004).

[2] H. Abidi and T. Hmidi : On the global well-posedness for Boussinesq System. J. Dift.
Equa. 233 (1), 199-220 (2007).

[3] H. Abidi and P. Zhang : On the global well-posedness of 2D Boussinesq system with
variable viscosity. Adv. Math. 305, 1202-1249 (2017)

[4] J. L. Boldrini, B. Climent-Ezquerra, M. D. Rojas-Medar and M. A. Rojas-Medar : On an
iterative method for approximate solutions of a generalized Boussinesq model. Journal
of Mathematical Fluid Mechanics volume 13, 33-53 (2011).

[5] H. Bahouri, J.-Y. Chemin and R. Danchin : Fourier analysis and nonlinear partial diffe-
rential equations. Springer-Verlag Berlin Heidelberg (2011).

[6] J. T. Beale, T. Kato and A. Majda : Remarks on the breakdown of smooth solutions for
the 3D—Euler equations. Commun. Math. Phys. 94, 61-66 (1984).

[7]1 A.Bertozzi and P. Constantin : Global regularity for vortex patches. Comm. Math. Phys.
152 (1), 19-28 (1993).

[8] J.-M. Bony : Calcul symbolique et propagation des singularités pour les équations aux
dérivées partielles non linéaires. Ann. de I’Ecole Norm. Sup. (14), 209-246 (1981).

ICMA2021-10



Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

(9]

(10]

(11]
[12]
[13]

[14]

[15]

(16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

J. R. Cannon and E. Dibenedetto : The Initial Value Problem for the Boussinesq Equa-
tions with Data in L. Lecture Notes in Math. 771, Berlin-Heidelberg-New York : Sprin-
ger, 129-144 (1980).

D. Chae : Global regularity for the 2D—Boussinesq equations with partial viscous terms.
Advances in Math. 203 (2), 497-513 (2006).

J.-Y. Chemin : Perfect incompressible Fluids. Oxford University Press (1998).

R. Danchin : Poches de tourbillon visqueuses. Math. Pures Appl. (9) 76, 609-647 (1997).

R. Danchin and M. Paicu : Global well-posedness issues for the inviscid Boussinesq
system with Yudovich’s type data. Comm. Math. Phys. 290, 1-14 (2009).

R. Danchin and X. Zhang : Global persistence of geometrical structures for the Bous-
sinesq equation with no diffusion. Communications in Partial Differential Equations,
42(1), 68-99 (2017).

N. Depauw : Poche de tourbillon pour Euler 2D dans un ouvert a bord. J. Math. Pures
Appl. (9) 78, no. 3, 313-351 (1999).

F. Fanelli : Conservation of geometric structures for non-homogeneous inviscid incom-

pressible fluids. Comm. Partial Differential Equations 37(9), 1553-1595 (2012).

D. Francesco : Global weak solutions for Boussinesq system with temperature dependent
viscosity and bounded temperature. Adv. Differential Equations, 21 (11-12) : 1001-1048
(2015).

B. Guo : Spectral method for solving two-dimensional Newton-Boussinesq equation.
Acta Math. Appl. Sinica 5, 27-50 (1989).

Z. Hassainia and T. Hmidi : On the inviscid Boussinesq system with rough initial data. J.
Math. Anal. Appl. 430, no. 2, 777-809 (2015).

T. Hmidi : Régularité holdérienne des poches de tourbillon visqueuses. J. Math. Pures
Appl. (9) 84, no. 11, 1455-1495 (2005).

T. Y. Hou and C. Li : Global well-Posedness of the viscous Boussinesq equations. Dis-
crete and Continuous Dynamical Systems. Series A, 12 (1), 1-12 (2005).

T. Hmidi and S. Keraani : On the global well-posedness of the two-dimensional Boussi-
nesq system with a zero diffusivity. Adv. Differential Equations 12 (4), 461-480 (2007).

T. Hmidi, S. Keraani and F. Rousset : Global well-posedness for an Euler-Boussinesq
system with critical dissipation. Commun. Part. Diff. Egs. 36(3), 420-445, (2011).

T. Hmidi and M. Zerguine : On the global well-posedness of the Euler-Boussinesq system
with fractional dissipation. Physica D. 239, 1387-1401 (2010).

T. Hmidi and M. Zerguine : Vortex patch for stratified Euler equations. Commun. Math.
Sci.Vol. 12, no. 8, 1541-1563 (2014).

T. Hmidi and S. Keraani : Inviscid limit for the two-dimensional Navier-Stokes equation
in a critical Besov space.Asymptotic Analysis, 53 (3), 125-138 (2007)

T. Hmidi, S. Keraani and F. Rousset : Global well-posedness for a Navier-Stokes-
Boussinesq system with critical dissipation. J. Differential Equations 249, 2147-2174
(2010).

T. Hmidi and F. Rousset : Global well-posedness for the Euler-Boussinesq system with
axisymmetric data. J. Funct. Anal. 260 (3), 745-796 (2011).

A. Larios, E. Lunasin and E. S. Titi : Global well-posedness for the 2d—Boussinesq
system without heat diffusion and with either anisotropic viscosity or inviscid voigt—o
regularization. Journal of Differential Equations, 255, 2636-2654 (2013).

ICMA2021-11



Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

(30]

(31]

(32]

[33]

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

P.-G. Lemarié-Rieusset : Recent Developments in the Navier Stokes Problem. Chapman
& Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton,
FL, 2002.

D. Li and X. Xu : Global well-posedness of an inviscid 2D Boussinesq system with
nonlinear thermal diffusivity. Dyn. Partial Differ. Equ. 10 (3), 255-265 (2013).

H. Li, R. Pan and W. Zhang : Initial boundary value problem for 2D Boussinesq equa-
tions with temperature-dependent diffusion. J. Hyperbolic Differ. Equ. 12(3), 469-488
(2015).

S. A. Lorca and J. L. Boldrini : The initial value problem for a generalized Boussinesq
model : regularity and global existence of strong solutions. Mat. Contemp. 110, 71-94
(1996).

S. A. Lorca and J. L. Boldrini : The initial value problem for a generalized Boussinesq
model. Nonlinear Anal., 36 (4), 457-480 (1999).

H. Meddour : Local stability of geometric structures for Boussinesq system with zero
viscosity. Accepted in

H. Meddour and M. Zerguine : Optimal rate of convergence in stratified Boussinesq
system. Dynamics of PDE, Vol. 15, no. 4, 235-263 (2018).

M. Paicu and N. Zhu : On the Yudovitch’s type solutions for 2D Boussinesq system
with thermal diffusivity. Discrete and Continuous Dynamical Systems. In press. ffhal-
02500672f.

J. Pedlosky : Ocean circulation theory. Springer-Verlag Berlin Heidelberg 1996.

C. Miao and L. Xue : On the global well-posedness of a class of Boussinesq- Navier-
Stokes systems. arXiv :0910.0311v1.

P. Serfati : Une preuve directe d’existence globale des vortex patches 2D. C. R. Acad.
Sci. Paris Sér. I Math, 318, No. 6, 515-518 (1994).

Y. Sun and Z. Zhang : Global regularity for the initial-boundary value problem of the 2D
Boussinesq system with variable viscosity and thermal diffusivity. J. Differential Equa-
tions, 255 (6) : 1069-1085 (2013).

T. Tao and L. Zhang : Holder continuous solutions of Boussinesq equation with compact
support. J. Funct. Anal., 272 (10), 4334-4402 (2017).

H. von Tippelkirch : Uber Konvektionszeller insbesondere in flussigen Schefel. Beitrage
Phys. Atmos., 20, 37-54 (1956).

S. Wang and Z. Zhang : Global well-posedness for the 2D Boussinesq system with the
temperature-dependent viscosity and thermal diffusivity. Adv. Math. 228, 43-62 (2011).

J. Wu and X. Xu. Well-posedness and inviscid limits of the Boussinesq equations with
fractional Laplacian dissipation. Nonlinearity, 27 (9), 2215-2232 (2014).

J. Wu, X. Xu, L. Xue and Z. Ye. Regularity results for the 2D Boussinesq equations with
critical or supercritical dissipation. Commun. Math. Sci. 14 (7), 1963-1997 (2016).

E. Weinan and C. Shu : Small-scale structures in Boussinesq convection. Phys. Fluids 6,
49-58 (1994).

V. L. Yudovich : Non-stationnary flows of an ideal incompressible fluid. Zhurnal Vych
Matematika, 3, 1032-106 (1963).

M. Zerguine : The regular vortex patch for stratified Euler equations with critical frac-
tional dissipation. J. Evol. Equ. 15, 667-698 (2015).

ICMA2021-12



	1  Introduction
	2  Tool Box
	2.1  Function spaces
	2.2  particle results
	2.3  A priori estimates

	3  Inviscid limit
	4  References

