
Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

OPTIMAL BANDWIDTH SELECTION IN M-TYPE ESTIMATE
OF THE REGRESSION FUNCTION IN ASSOCIATED AND

LEFT-TRUNCATED MODEL

Gheliem Asma*,Guessoum Zohra**

*M.S.T.D Laboratory, USTHB , Algiers, Algeria,
agheliem@usthb.dz

**M.S.T.D Laboratory, USTHB , Algiers, Algeria,
zguessoum@usthb.dz

ABSTRACT

The choice of the smoothing parameter, or bandwidth, is crucial to the effective performance of
the estimator. In this contribution we are interested by a bandwidth-selection rule in the M-type
estimation of the regression function in associated and left-truncated model .

1. INTRODUCTION AND MOTIVATION

Let Y be a real random variable (rv) of interest with distribution function (df) F and X a
random vector of covariates taking its values in Rd with (df) V and continuous density v and we
want to estimate Y after observing X . The regression function between Y and X for x ∈ Rd , is
defined by the conditional expectation of Y given X = x, that is

r(x) = E[Y |X = x].

Note that the function r(x) can be expressed as

r(x) = argmin
s∈R

E[(Yi− s)2|X = x].

This latter is a particular case of a more general definition when dealing with robust estimation,
viz

r(x) = argmin
s∈R

E[ρ(Yi− s)|X = x],

where ρ(.) is an outlier-resistant loss and convex function defined on R, hence, one can see r(x)
as a solution, with respect to s (w.r.t.s), of

E[ψ(Yi− s)|X = x] = 0

where ψ(.) := ∂

∂ s ρ(.) is a monotone (score) function.

The corresponding non parametric M-estimator is equivalent to solving the equation

n

∑
i=1

Kd

(
x−Xi

hn

)
ψ(Yi− s) = 0,

where Kd is a kernel function on Rd and hn is a sequence of positive real numbers which goes to
zero as n goes to infinity (bandwidth). As it is well known, this last estimator is sensitive to the
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presence of outliers (for example in economic and finance time series) and suffers from being
not robust.
In realistic framework, the variable of interest Y may be subject to censoring and/or truncation.
Under random left-truncation model (RLTM), Wang and Liang (2012) [3] constructed the M-
estimator of the non parametric regression function for α-mixing data and truncated multivariate
data and established a weak and strong consistency of the estimator (without rate) as well as its
asymptotic normality.

The choice of the smoothing parameter, or bandwidth, is crucial to the effective performance
of the estimator. In the complete sample case, several authors have taken an interest to the mean
integrated squared error (MISE) which has an asymptotic decomposition as a simple variance
term, a simple squared bias tern and some negligible terms.

Our focus in this contribution is to see how this type of decomposition may be done for an M-
type regression estimator, in the case of truncated and associated data and to give the theoretical
form (local and global) of the bandwidth.
The concept of association was introduced and defined by Esary 1967[1],

Definition 1 A set of finite family of rv’s (X1,X2, ...,XN) is said to be associated if for every pair
of functions g1(.) and g2(.) from RN to R, which are non decreasing componentwise,

Cov(g1(X),g2(X))≥ 0,

whenever the covariance is defined, where X = (X1,X2, ....,XN). An infinite sequence {XN ,N ≥
1} of rv’s is said to be associated if every finite subset is associated.

2. MODEL AND MAIN RESULT

Let (Xk,Yk),1≤ k ≤ N be a sequence of associated random vector, where Y has continuous
df F and T be the truncation variable with continuous df G, defined on the same probability space
(Ω,F,P). Let f (.,.) be the joint density function of the random vector (X, Y). We assume throu-
ghout this paper that T and (X, Y) are independent.
Under RLTM, the lifetime Y and T are observable only when Y ≥ T , here N is the potential
sample size. As a consequence of truncation, the size N is fixed but unknown and n, the size of
the actually observed sample, is random and known with n≤ N.

Let µ =: P(Y ≥ T ) be the probability to observe the rv of interest Y. Under RLTM, we denote
by m(x) the implicit solution (w.r.t.s), of

H(x,s) :=
∫
R

ψ(y− s)
f(x,y)
G(y)

dy =
1
µ
E[ψ(Y − s)|X = x)]v(x) = 0.

Moreover as H(x,s) can be empirically estimated by

H̃n(x,s) :=
1

nhd
n

n

∑
i=1

1
G(Yi)

Kd

(
x−Xi

hn

)
ψ(Yi− s),

we propose m̃n(x), the implicit solution (w.r.t.s) of H̃n(x,s) = 0, as un M-estimator of m(x).
Nevertheless, as G(.) is unknown, the estimator H̃n(x,s) is unusable and so is m̃n(x). We finally
define m̂n(x), the implicit solution (w.r.t.s) of

Ĥn(x,s) :=
1

nhd
n

n

∑
i=1

1
Gn(Yi)

Kd

(
x−Xi

hn

)
ψ(Yi− s) = 0,
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as a feasible M-estimator of m(x), where Gn(x) is the well known product limit estimator of G(x)
in RLTM, proposed by Lynden-Bell(1971)[2] defined by

Gn(y) = ∏
Ti>y

[
nCn(Ti)−1

nCn(Ti)

]
,

where

Cn(y) =
1
n

n

∑
i=1

I{Ti≤y≤Yi},

is an estimator of C(y) := P{T ≤ y≤ Y |Y ≥ T}. Set

Λ1(x,u,m(x)) := 1
µ
E
[
ψ(Y −m(x))

∣∣∣X = u
]
v(u) = H(x,m(x)) = 0,

Λ2(x,u,m(x)) := 1
µ
E
[
ψ2(Y −m(x))G−1(Y )|X = u

]
v(u),

Λ3(x,u,m(x)) := 1
µ
E
[
ψ ′(Y −m∗(x))|X = u

]
v(u),

Λ4(x,u,m(x)) := 1
µ
E
[
ψ ′2(Y −m∗(x))G−1(Y )|X = u

]
v(u)

To simplify the notations, let
Λi := Λi(x,x,m(x)) i = 1,2,3,4
Then we have,

Proposition 1 Under some regularity conditions, we have

Var(m̃n(x)) =
κ

nhd
n

Λ2

Λ2
3
+o
(

1
nhd

n

)
With κ :=

∫
Rd K2

d (t)dt(<+∞)

Proposition 2 Under some regularity conditions, we have

Bias(m̃n(x)) = −

h2
n

2

d
∑

i=1

d
∑

j=1

∂ 2Λ1
∂xi∂x j

∫
Rd t2

i Kd(t)dt

Λ3
+0
(

1
nhd

n

)

Theorem 3 i) Under the conditions of Propositions 1 and 2, we get

a) MSE(x,hn) =
h4

n
4

(
d
∑

i=1

d
∑

j=1

∂ 2Λ1
∂xi∂x j

∫
Rd t2

i Kd(t)dt

)2

Λ2
3

+
κ

nhd
n

(
Λ2

Λ2
3

)
+o
(

1
nhd

n

)

b) AMSE(x,hn) =
h4

n
4

(
d
∑

i=1

d
∑

j=1

∂ 2Λ1
∂xi∂x j

∫
Rd t2

i Kd(t)dt

)2

Λ2
3

+
κ

nhd
n

(
Λ2

Λ2
3

)
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ii) Under the conditions of Propositions 1 and 2 and for I ⊆ R, we get

MISE(x,hn) =
∫

I


h4

n
4

(
d
∑

i=1

d
∑

j=1

∂ 2Λ1
∂xi∂x j

∫
Rd t2

i Kd(t)dt

)2

(Λ3)
2 +

κ

nhd
n

(
Λ2

Λ2
3

)
dx+o

(
1

nhd
n

)

Corollary 4 i) Under the conditions of Propositions 1 and 2, we get

hopt
n,MSE = n

−1
d+4 .


dκΛ2(

d
∑

i=1

d
∑

j=1

∂ 2Λ1
∂xi∂x j

∫
Rd t2

i Kd(t)dt

)2



1
d+4

ii) Under some regularity conditions

hopt
n,MISE = n

−1
d+4 .


d
∫

I κΛ2dx

∫
I

(
d
∑

i=1

d
∑

j=1

∂ 2Λ1
∂xi∂x j

∫
Rd t2

i Kd(t)dt

)2

dx



1
d+4
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