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ABSTRACT

In this paper, we demonstrate that the multiplicative bias correction (MBC) approaches can be
extended for both Inverse Gamma (IG) and Beta Prime (BP) kernel density estimators. First,
some properties of the MBC-1G and MBC-BP kernel density estimators (bias, variance and mean
integrated squared error) are shown. Second, the least square cross validation technique (LSCV)
is adapted for the choice of bandwidth.

1. INTRODUCTION

Given a random sample of observations {X;}}_, with univariate density f, whitch is suppor-

ted on T = [0,e0). A continuous symmetric or asymmetric kernel estimator fu(x) of £ () can be
defined as follows :

i) = 1 ¥ Ken(Xi),
i=1

Where K, j, is the continuous symmetric or asymmetric kernel with the target x and & = h(n) > 0
is an arbitrary sequence of smoothing parameters (bandwidths).

Recently two classes of multiplicative bias correction ("MBC") techniques were proposed in or-
der to estimate the univariate densities, with compact [Hirukawa(2010)|] and with bounded sup-
port [Hirukawa and Sakudo(2014)], [Zougab et al.(2015)] for generalized Birnbaum-Saunders
kernel density estimators, [Harfouche et al.(2018a)] and [Harfouche et al.(2018b)] in the context
of probability mass function with discrete kernels. These two classes are initially investigated
in [Terrell and Scott(1980)|] and in [Jones et al.(1995)|], witch improve bias from O(hz) as the
bandwidth 7 — 0 to O(h*) for symmetric kernel functions. It is well known that the symme-
tric kernel estimator is inappropriate in the context of estimating unknown probability densities
whitch are supported on T = [0,0) because it causes boundary bias without producing negative
values of the estimate, and we accept that the use of asymmetric kernels functions has many
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advantages such as optimal rate of convergence in the mean integrated squared error sense for
kernels of order two, witch were originally employed in [Chen(1999)| for nonparametric esti-
mation of compact using Beta as kernel functions, and [Chen(2000)|] with (gamma and modi-
fied gamma kernels). Two recent papers are respectively proposed by [Mousa et al.(2016)] (In-
verse Gamma (IG) kernel) and [Ercelik and Nadar(2018)|] (Beta Prime (BP) kernel) in the same
context (In the context of unknown probability density estimation). They have shown that the
optimal rate of convergence of the mean integrated squared error for this estimator is of order
0(n*4/ (5)) where they assuming that the true density f is twice continuous. [Hirukawa(2010)],
[Hirukawa and Sakudo(2014)|] and [Zougab et al.(2015)|] have demonstrated that the two classes
of MBC approaches can be applied in the case of nonparametric density estimation with asym-
metric kernel, where they assuming that f is four times continuous with bounded derivatives,
the both methods reach an optimal rate of convergence of mean integrated squared error of order
O(n8/9).

The current work is also motivated by several points. First, The IG and BP kernel density
estimators are often used in modeling the hydrological problems and modeling the frequency
of certain behavioral acts because of its long tail. Second, they are free of boundary bias, have
flexible shape, always nonnegative, and achieve the optimal rate of convergence for the MSE of
order of O(n*4/ <5)) and MISE within the class of nonnegative kernel density estimator. The main
aim of this paper is to extend the application of MBC approaches for Inverse Gamma (IG) kernel
and Beta Prime (BP) kernel estimator as in [Hirukawa(2010)], [Hirukawa and Sakudo(2014)]
and [Zougab et al.(2015)], in order to reach an optimal rate of convergence of mean integrated
squared error of order O(nfg/ (9)). First, we provide the asymptotic properties of these estimators
and show that the optimal rate of convergence of the mean integrated squared error is obtained.

This paper is organized as follows. Section 2 briefly recalls on IG and BP kernels for density
estimation. In Section 3, we first introduce the MBC kernel density estimators based on IG and
BP kernels. Second, we show some properties of the MBC-IG and MBC-BP kernels density
estimators (bias, variance and mean integrated squared error). Third, we adapt the least square
cross validation technique (LSCV) for the choice of bandwidth. Conclusion of our paper is given
in section 4.

2. A SHORT REVIEW ON IG AND BP KERNELS

This section is dedicated to present a brief recall on both IG and BP kernel density estimators.

2.1. IG and BP kernel estimator

Given a random sample X, ..., X}, the IG and BP estimator of an unknown pdf f with non-
negative support are given by [Mousa et al.(2016)] and [Ercelik and Nadar(2018)]| respectively
by

S| =

fitx) =

1

Ko (Xi) (1
=1

where x > 0 is the target (point where the density is estimated), 2 > 0 is a bandwidth (or
smoothing parameter), j = /G, BP and the explicit form of K, ) (X;) is given in table

The expressions of the bias and variance for f](x) are derived by [Mousa et al.(2016)|] and
[Ercelik and Nadar(2018)|]. The asymptotic bias when & — 0 is given by

bias(f;(x)) = q;(x, f)h+o(h), )

where the explicit form of g;(x, f) is given in table 2| Similarly, when n — oo and & — 0 the
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TABLE 1 — Univariate continuous kernels.
Kernel(j) Explicit form

IG ([Mousa et al.(2016)]) KiGap) () = %(1 /y) Lexp(—B/y),
whereoc:h%—i-l and ﬁ:@

BP ([Ergelik and Nadar(2018)|]) KBP(A.’“)( y) = %,

wherel:%z—i-x—i-l and u:%—kﬁ—kl.

TABLE 2 — Explicit form of g;(x, f).
Kernel(j) Explicit form
IG ([Mousa et al.(2016)]) aic(x. f) = 2 f"(x)x,
BP ([Ergelik and Nadar2018)))  gap(x, f) = f'(x) + (1 +x) L.

asymptotic variance is
~ 1
Var(7 1) = e 1) +o (75 ). ®
where the explicit form of p;(x,h) is given in table
The mean integrated squared error (MISE) is also given in [Mousa et al.(2016)]] and [Ercelik and Nadar(2018)]

TABLE 3 — Explicit form of p;(x,h).
Kernel(f) Explicit form

IG ([Mousa et al.(2016)]) pic(x,h) = 2\/lﬁn—‘h—1 12

BP ([Ercelik and Nadar(2018))  pgp(x,h) = ﬁn_'h_'/z(l +x)71/2,

and is expressed as

MISE(fj) = /biasz(fj(x))dx—i-/Var(fj(x))dx
0 0

# [ . fax

/pj(x,h)f(x)dx—i-o(hz—i-il). 4)
nh2

+

Remark
Under sufficient smoothness of the true density, they are shown that the order of magnitude in

nh2
density estimators will be investigated in the next section. The two classes of MBC density

estimators by construction nonnegative, and establish a faster convergence rate of o (h4 + %) .

nh2

MISE of kernel density estimator (1)) is o (h2 + %) For these raison, two classes of MBC

3. MBC FOR IG AND BP DENSITY ESTIMATORS

In this section, we apply two classes of MBC techniques for IG and BP kernel density estima-
tor. The two classes are originally proposed by [Terrell and Scott(1980)] and [Jones et al.(1995)]
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for symmetric kernel density estimator. Note that these MBC techniques have also extended re-
cently by [Hirukawa(2010)|| and [Hirukawa and Sakudo(2014)|] for kernel density estimation on
the unit interval using beta and modified beta kernels and for density estimation using asymme-
tric kernels (gamma, modified gamma, inverse gaussian, reciprocal inverse gaussian, log-Normal
and Birnbaum-Saunders kernels), respectively.

3.1. Estimators

Based on the same idea of [Terrell and Scott(1980)|] and [Hirukawa(2010)], the MBC kernel
density estimator using the IG and BP kernels, which we simply denote TS-j kernel density
estimators, can be adapted as follows :

1 a

Frs— i@ ={ T}~ {Tina0} )

where fj‘h and fj i/a denote the IG or BP kernel density estimators given by (1) with bandwidths
h and h/a, respectively, with a € (0,1) is a constant that does not depend on the target x; see,
e.g., [Hirukawa(2010)].

The second class of MBC techniques for symmetric kernel density estimators is attributed to
[Jones et al.(1995)] (see also [Hirukawa(2010)] and [Hirukawa and Sakudo(2014)] for asymme-
tric kernel density estimators). The analogue of their estimators using IG and BP kernels, which
we denote JLN-j kernel density estimators is given by

N I’W} °
Jien—j(x) fl(){n,zi fix) ) ;

where K, ) is the IG or BP kernel.

3.2. Asymptotic properties

The following theorems present the asymptotic bias and variance of the TS-j and JLN-j
kernel estimators. We assume that
Al. f has four continuous and bounded derivatives.
A2. The sequence of bandwidths i = h(n) satisfies lim,—e i = 0.
Note that these assumptions have been discussed in [Hirukawa(2010)|] and [Hirukawa and Sakudo(2014)|].

Theorem 1 Let frs_j be the TS-j kernel estimator defined by . For a given x > 0 and under
assumptions Al and A2, then :
(i) the bias of the TS-j kernel estimators admit the following expansion

1w
2{ f(jx) _V/Z,j(x)}] W +o(h?),

L~ 1
bias(frs-;) =

where 1 j(x) and y j(x) are given in Tableand respectively.
(ii) the variance of the TS-j kernel estimators is given by

Var(frs_ ;) = v(a)p;(x,h) f(x) +o (nh;l/z) .

5/2 1/2_ 3/2
where Y(a) - e (1)421;72)(17;);/% ’
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TABLE 4 — Explicit form of yy ;(x).
Kernel(j) Explicit form
G L),

BP £+ S )+ (x) = 5" ():

TABLE 5 — Explicit form of v ;(x).
Kernel(j)  Explicit form
1G %xzf””(x) _ %xfm(x),
BP — 5" ().

Theorem 2 Let J?JLN,j be the JLN-j kernel estimator defined by (@) For a given x > 0 and under
assumptions Al and A2, then :
(i) the bias of the JLN-j kernel estimator is given by

bias(frv—j) = —f () w1 j(x,g)h* +o(h?),

where g(x) = W1 (x, j)/f(x) and v j(x) is the same as given in Theorem 1.
(ii) the variance of the JLN-j kernel estimators has asymptotic form

Var() = ) 1) +o (7).

3.3. Global propriety

The criterion to use for the global propriety is the mean integrated squared error (MISE)
defined as

MISE(fupc—)) = / bias?(fypc— j(x))dx + / Var(fypc—j(x))dx, @)
0 0

where ]/C\MBC—j is the TS-j or the JLN-j kernel density estimators.
The mean integrated squared error (MISE) of the TS-j kernel estimators given in (3) is ex-
pressed as

. 2 o
MISE(frs_ ) = - Vi, d h)f(x)d L
(Frs—) = 420/ g vl k@ 0/ Py h)f()dv+o (—zs 4t ).
(®)
The optimal bandwidth minimizing the corresponding MISE (B) is such that
TS P
2 X
: a Y(a)f mdx
hls 16 = 2 . ©)
8[{‘/’116()5 _IIIZIG( )} dx
S w”
2 X
opt ‘ y(a)({ mdx 2/9
h7s—pp = y . (10)
Sf { i, Bl’(x _ II/Z,BP(X)} dx
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Similarly, the MISE of the JLN-j kernel estimators given in (€ is given by

MISE(iux—) = [ VR g+ [ pjeh)fdr+o (nh1 - +h4> Can
0 0
By minimizing (TT) in the bandwidth /, we obtain the optimal value
o 2/9
f {(x) dx
ot o o ¥/72v2n —-2/9 12
JIN-IG = | —= 2 no (12)
87 £2(x) [xg ()] dx
0
Py 2
opt o TFo72vE 2/9
hJﬁN—BP: n2/9. (13)

o 2
. 1
81 20 [¢/0)+ 5" () + 29 () — ()]
Note that the bandwidths (@), (I0), (I2) and (I3) can not be employed in practice. Then, next
subsection presents a practical procedure to bandwidth selection.
3.4. Choice of bandwidth for MBC-j kernel estimators

The optimal bandwidths given by (9), (T0), (T2) and (T3) depend on the unknown density f
and on its derivatives f/, f”, f and f", for these raison, they can not be exploited in practice.
In this paper, we adapt the least square cross validation (LSCV) method. In the case of the LSCV
technique, for a given estimator j?MBC—j, which denote the TS-j or JLN-j kernel estimators, the
optimal bandwidth A, of & is obtained by

hyscy = arg m}jn LSCV(h),
where

28
LSOV = [ e j(0dx— Y fiupee (X0,
i=1

where J/‘L;é_ j(y) is the leave-one-out estimator computed as _fMBC,j (y) by excluding the obser-
vation X;. For the TS-j kernel estimators, the LSCV function is given

LSCVrs-j(h) - = 7 {Mx)}%{f,«,h/am}’%dx_ﬁ
0

1

<) {ZKJ(X,»,h)(Xk)} H{ZKj(X,»,h/a)(Xk)} B .14

i | Lk k2

In the case of JLN-j kernel estimators, the expression of LSCV is

hos 2
wsevm ) = o [ £ gt
0

n i=1 J?j(Xi)
Fi(x)

X Ky m\(Xp)= . (15)
Zl:];.l J(th)( k)fj(Xk)
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4. CONCLUSIONS

This paper has extended the application of the multiplicative bias correction (MBC) ap-
proaches for Inverse Gamma (IG) and Beta Prime (BP) kernels in order to estimate densities with
nonnegative data. As in several papers, [Hirukawa(2010)] and [[Hirukawa and Sakudo(2014)f], we
have demonstrated that these two approaches of MBC improve the order of magnitude in bias
from O(h) to O(h?). The performances of the MBC-IG and MBC-BP kernel estimators (TS-IG,
JLN-IG, TS-BP and JLN-BP kernel estimators) with the least square cross validation (LSCV)
bandwidth selectors are investigated.
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