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ABSTRACT

In this paper, we present a model for image shadows removal. The model reformulates
a recent osmosis model with nonlocal differential operators. Experimental results show
that the nonlocal model obtained very good qualitative results compared with state-of-
the-art techniques.
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1. INTRODUCTION

We consider a given grayscale image f : Ω → R∗+, where Ω ⊂ R2 is a regu-
lar domain with boundary ∂Ω and f is continuously differentiable. We suppose that
the image f contains a shadow that we want to filter out. As shown on Figure 1, we
decompose the domain Ω into three disjoint regions,

Ω = Ωin ∪ Ωsb ∪ Ωout, (1)

where Ωout, Ωin and Ωsb represent the shadow-free, shadowed, and boundary regions
respectively. Their characteristic functions will be denoted by χout, χin, and χout.

A shadowed image shadow-free region Boundaries Shadow region
f Ωout Ωsb Ωin

FIGURE 1 – Image shadow and domain decomposition.
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2. NONLOCAL MODEL FOR IMAGE SHADOWS REMOVAL

We propose a new nonlocal model for shadow removal which consists in looking
for a function u : Ω→ R+ that minimizes an energy composed of three terms :

E(u) := S(u) + λ1R(u) + λ2F(u), (2)

where S denotes a shadow term, R is a regularization term, and F is a fidelity term.
The terms are balanced using positive weights λ1 and λ2.

Shadow term This term is the nonlocal version of the osmosis model [2] :

S(u) =
1

2

∫
Ω

v(x)
∣∣∣∇NL

(u
v

)∣∣∣2 (x) dx, (3)

where

v(x) =

 f(x), if x ∈ Ωin ∪ Ωout,

1, if x ∈ Ωsb,
(4)

and ∇NLu : Ω × Ω → R stands for a nonlocal gradient which permits to take into
account nonlocal interactions between distant pixels. Here, we use the Gilboa operator
[4] defined by

∇NLu(x, y) = (u(y)− u(x))
√
ω(x, y),

where 0 ≤ ω(x, y) < ∞ is a weight function. In this paper we assume symmetric
weights, i.e., ω(x, y) = ω(y, x). The magnitude of a nonlocal gradient is defined by

|∇NLu|(x) :=

√∫
Ω

∇NLu(x, y)2 dy.

For any p : Ω × Ω −→ R, considering the usual inner products of L2 space, the
nonlocal divergence divNL p : Ω→ R is defined as

(divNL p) (x) =

∫
Ω

(p(x, y)− p(y, x))
√
w(x, y) dy.

Fidelity term As the image region Ωout does not contain shadows, we impose that
the solution u should stay close to f on Ωout. Therefore, we minimize the following
term

F(u) =
1

2

∫
Ωout

(f(x)− u(x))
2

f(x)
dx. (5)

Regularization term To ensure a smooth transition between the shadowed and
shadow-free regions, we perform an anisotropic regularization of image intensities on
Ωsb. As in [1], using the modified tensor voting approach [3], we estimate the local
structure, a positive semi-definite symmetric matrix-valued field W : Ω −→ R2×2

used to promote preferred directions. We define the regularization termR as

R(u) =
1

2

∫
Ωsb

‖∇u(x)‖2W dx, (6)

where ‖e‖W :=
√
〈e,We〉. This term can be interpreted as an inpainting in which

information is propagated from Ωout and Ωin to Ωsb. It is worth noting that local deri-
vatives are considered here.
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3. EVOLUTION PROBLEM

In this section, we derive the evolution associated with the energy (2). Starting
from an initial image usually chosen to be f , we seek a restored image u(t, ·) which
will evolve over time t.

Proposition 1 Assume that f ∈ L∞(Ω;R+). The evolution process associated to
Equation (2) is given as follows :

∂tu (t, x) = divNL

(
v(x)∇NL

(
u(t, .)

v

)
(x, y)

)
+λ1χsb(x)div(W(x)∇u(t, x))
+λ2χout(x) (f(x)− u(t, x)), in Ωt,

u(0, x) = f(x), in Ω,
〈W∇u, n〉 = 0, on ∂Ωt

sb,

(7)

where Ωt = (0, T )× Ω, ∂Ωt
sb = (0, T )× ∂Ωsb, and n is the outward normal.

to solve this equation, we used the explicit Euler method.

4. EXPERIMENTS

We compared our nonlocal osmosis model to previous isotropic [1] and anisotropic
[2] osmosis models, on synthetic and real images. Figure 2 shows some cases. Our
model improved shadow removal in most cases, overcoming blurring artifacts on the
boundaries (isotropic model) and in the shadowed regions (anisotropic model). We also
obtained better results in the shadow-free region.

5. CONCLUSIONS

In this paper, we presented our new nonlocal model for shadow removal. Our main
contribution is the use of nonlocal derivatives within the recent osmosis model, which
takes into account distant pixels similarities. Numerical resolution gives an efficient
algorithm which overcomes blurring artifacts and preserves the textures and details
compared to previous state-of-the-art techniques.
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FIGURE 2 – Shadowed removal using osmosis models. From left to right : Input (sha-
dowed) image, Isotropic [2], Anisotropic [1], and the nonlocal osmosis models results.
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