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ABSTRACT

In this work, we consider the nonparametric estimation of the probability density function for
nonnegative heavy-tailed (HT) data. The objective is first to propose a new estimator that will
combine two regions of observations (high and low density), while associating to the high den-
sity region a gamma kernel and to the low density region a BS-PE kernel. Then, to compare the
proposed estimator with the classical estimator in order to evaluate the performance of the new
estimator. The choice of bandwidth is investigated by adopting the popular cross-validation tech-
nique and two variants of bayesian approach. Finally, the performances of the proposed estimator
and the classical estimator are illustrated by a simulation study and real data.
Keywords : Bayesian bandwidth selector, BS-PE kernel, Cross validation, Gamma kernel, Heavy
tailed data, Kernel density estimation, MCMC method.

1. INTRODUCTION

In this work, we are interested in the estimation of the heavy tailed data density with non-
negative support [ZIANE et al.(2015)] and [ZIANE et al.(2018)]. This data type requires special
methods because of their specific characteristics which are slow decay to zero and the rare ob-
servations in the tail. As the parametric methods do not meet the characteristics of this data
type, the nonparametric kernel method is proposed. The efficiency of the latter depends on the
choice of its two parameters, the kernel K and the smoothing parameter h. The most used ker-
nels in the literature are the symmetric kernels such as the Gaussian kernel and the Epanechni-
cov kernel for unbounded support densities. However, when we want to estimate densities with
unbounded support, the classical kernel estimator becomes non consistent, because of edge ef-
fects. This problem is due to the use of symmetric kernels which assign a weight outside the
support when the smoothing is taken into account near the edge. To address this problem, seve-
ral authors have proposed a new family of the asymmetric kernel. See [CHEN(2000)] (gamma
and modified gamma kernels), [SCAILLET(2004)] (inverse and reciprocal inverse Gaussian ker-
nels), [Jin and Kawczak (2003)] (lognormal and Birnbaum-Saunders (BS) kernels) and recently
[MARCHANT et al.(2013)] proposed Generalized Birnbaum-Saunders (GBS) kernel for esti-
mating densities with nonnegative support, that includes BS-power-exponential (BS-PE) and
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BS-Student (BS-t) kernels, it is proposed for analyzing nonnegative Heavy Tailed (HT) data.
The performance of the associated kernel density estimator depends crucially on the smoothing
parameter which controls the smoothing quality of the estimator. Classical methods have been
proposed for the smoothing parameter choice, the family of cross-validations, they are interesting
in practice because they are guided only by the observations. However, the drawback of these
methods is that they tend to provide under or oversmoothed estimators when the data are small
or medium size or when we want to estimate complex functions. So, to deal with this problem,
the Bayesian approach has been proposed.
In this work, we based on the idea of [ZIANE et al.(2021)], where they proposed a subdivision
of the HT dataset into two subsets (two regions) with low and high density (Low Density Region
(LDR) and High Density Region (HDR)), and associated to each region a smoothing parameter
(hLDR and hHDR). We propose an estimator composed of two different kernels gamma and BSPE,
where the gamma kernel is associated with the high density region and the BSPE kernel asso-
ciated with the high density region (see also [MARKOVICH(2016)]). The new Gamma-BSPE
kernel density has two smoothing parameters (bandwidths) that will be selected by the adaptive
Bayesian approach. A comparative study is conducted with the work of [ZIANE et al.(2021)],
where they considered a single BSPE kernel for both regions.
The paper is structured as follows. Section 2, presents the classical BSPE kernel estimator. In
section 3, we introduce the new gamma-BSPE kernel estimator. In section 4, we give the pro-
cedure proposed for derived the adaptive bandwidths. Simulation studies and application of real
data are presented in Section 5 and 6. Section 7 concludes the paper.

2. THE CLASSICAL BS-PE KERNEL ESTIMATOR

Given a random sample X1, . . . ,Xn, the BS-PE kernel estimator of an unknown pdf f with
nonnegative support is given by
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where x > 0 is the point where the density is estimated, h> 0 is a smoothing parameter and ν > 0
is a fixed parameter.
The expression of the bias and variance for f̂BS−PE(x) are derived by Marchant et al. (2013). The
asymptotic bias when h→ 0 is given by
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3. THE GAMMA-BSPE KERNEL ESTIMATOR

In this section, we present a new density estimator for heavy tailed data which is flexible on
the domain near the zero boundary and that estimate the heavy tail of the distribution, the latter
is based on : dividing the observations into two regions, namely the low-density region (LDR)
and high-density region (HDR), and assigning two different bandwidths to these two regions
[ZIANE et al.(2021)]. We also propose to combine two asymmetric gamma and BS-PE kernels
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([CHEN(2000)] and [MARCHANT et al.(2013)]) as follows : associate a gamma kernel for the
high-density region (HDR) (near bord) and BS-PE kernel for the low-density region (LDR).

Gamma kernel
The gamma kernel is nonnegative and possess good boundary properties for wide class of

densities, it is given by :

KGam(x,h)(y) =
y

x
h

Γ(1+ x
h )h

1+ x
h

exp
(
− y

h

)
1{0≤x<∞}(y); (2)

where Γ(y) =
∫

∞

0 ty−1 exp(−t)dt is the classical gamma function with y > 0, and 1{0≤x<∞} de-
note the indicator function.
The classical gamma kernel estimator of an unknown pdf f with nonnegative support is given by

f̂Gam,h(x) =
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gamma-BSPE kernel estimator
After the subdivision of the data set into two subsets, we present the estimator associated

with this subdivision by associating different kernels to the two regions, gamma kernel for the
HDR region and BSPE for the LDR region. The gamma-BSPE Kernel estimator is given by :

f̂h(0),h(1)(x) =
1
n

n

∑
j=1

{
I jKx,h(1)(x j)+(1− I j)Kx,h(0)(x j)

}
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1
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. (4)

where

I j =

{
1, i f x j ∈ S(HDR), j = 1, . . . ,n;
0, else.

S(HDR) : the observations of the high-density region (HDR), S(LDR) : the observations of the low-
density region (LDR)
and h(1) denotes the bandwidth assigned to the observations of S(HDR), and h(0) the bandwidth
assigned to the observations of S(LDR).

4. ADAPTIVE BAYESIAN BANDWIDTH SELECTION

In this section, we derive the variable Bayesian bandwidths at each subset (S(HDR) and
S(LDR)) (Bayesian adaptive approach) for Equation (4) in the kernel density estimation context,
with positive support using the gamma-BSPE kernels. We treat h(1) and h(0) as random quan-
tities with prior distributions π1(·) and π0(·). As proposed by[ZIANE et al.(2015)], we assume
that the variable bandwidths h(1) and h(0) has a prior distributions with parameters α , β and
ν = 2 ; this prior is defined by

π(h(0)) =
ν

Γ(α)β α

1
(h(0))αν+1

exp
(
−1

β (h(0))ν

)
, h(0) > 0 (5)
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and

π(h(1) =
ν

Γ(α)β α

1
(h(1))αν+1

exp
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)
, h(1) > 0 (6)

The posterior of h(1) and h(0) for given {x1,x2, . . . ,xn} is

π̂(h(1),h(0)|x1,x2, . . .xn) ∝

{
n

∏
i=1

f̂h(0),h(1)(xi)

}
π(h(0))π(h(1)) (7)

Under the squared error loss, the Bayes estimator of the smoothing parameters h(1) and h(0) is
the mean of the posterior density, given by :(

ĥ(1), ĥ(0)
)
=
∫ ∫

(h(1),h(0))π̂(h(1),h(0)|x1,x2, . . .xn)dh(1)dh(0). (8)

We cannot derive an analytical expression as the estimate of
(

ĥ(1), ĥ(0)
)

from the formula
(7) and (8). However, we propose using the Markov Chain Monte Carlo method (MCMC) for
the approximation. We use a randamwalk metropolis algorithm to sample

{
h(1),h(0)

}
and the

sampling algorithm is briefly described below :

Step 01 Initialize h(0), where h =
(

h(1),h(0)
)

.

Step 02 For i ∈ {1, . . . ,M},
a) Generate h̃ ∼ truncate Normal (h(i−1),σ

2).

b) Calculate the acceptance probability α = min{1, π(h̃/x)
π(h(i−1)/x)

truncate Normal(h(i−1),σ
2)

truncate Normal(h̃,σ 2)
}.

h(i) =

{
h̃, µ < α , µ ∼ U[0,1] ;
h(i−1), else.

Step 03 i = i+1 and go to step 2.
Reject (h(0),h(1), . . . ,h(M0)) which represents burn-in period, and estimate h by

ĥ =
1

M−M0

M

∑
i=M0+1

h(i).

5. SIMULATION STUDY

In this section, we examine and compare the performances of the adaptive badwidth ap-
proach for

(
gamma-BSPE kernel estimator and BSPE kernel estimator proposed in [ZIANE et al.(2021)]

)
,

with global bandwidth approach
(
bayesian global and classical UCV method

)
, by using several

nonnegative heavy tailed distributions.
The optimal bandwidth selected by classical method UCV was obtained by :

hUCV = argmin
h

UCV (h),

where :

UCV(h) =
∫

f̂ 2
{h(0),h(1)}(x)dx− 2

n

n

∑
i=1

f̂{h(0),h(1),i}(Xi)

and f̂{h(0),h(1),i} being computed as f̂{h(0),h(1)} by excluding Xi.
We consider the target densities labeled D1, D2 and D3. Functional forms of these densities are
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TABLE 1 – Distributions in simulation study.
Distribution Density Parameters

D1 lognormal(µ,σ ) f1(x) = 1
xσ
√

2π
exp
(
−1

2σ2 (ln(x)−µ)2
)
. (µ,σ) = (1,1)

D2 Burr(k,r) kxk−1

(1+rxk )r+1 (k,r) = (3,1)

D3 Mixture of pGamma(α1) p× xα1−1 exp(−x)
Γ(α1)

+ p× xα2−1 exp(−x)
Γ(α2)

(α1,α2, p) = (2.5,10,0.5)
and pGamma(α2)

given by table 1.
This comparison is based on the data simulated from D1, D2 and D3 and five samples sizes

n = 10, 25, 50, 100 and n = 500, using Nsim = 100 replications. We examine the performances
of these methods via integrated square error (ISE) criterion, defined by :

ISE =
∫
{ f̂h(x)− f (x)}2dx (9)

Table 2 presents the average ISE (ISE) and the average of bandwidth h (h) based on 100 repli-
cations for the estimators of D1, D2 and D3. The burn-in period contains M0 = 1500 iterations
and the following M = 3000 iterations were recorded. From Table 2, we observe that :

• For all estimators, the means of ISE and h based on 100 replications decrease as sample
size n increases.

• For all sample sizes and models considered, the adaptive Bayesian approach (BSPE and
Gamma-BSPE) outperforms the global Bayesian approach and the classical UCV me-
thod.

• We notice that, mean h associated with the high density region (HDR) is smaller than
the mean h associated with the low density region (HDR) for both adaptive Bayesian
approaches (BSPE and Gamma-BSPE).

• A comparison between the UCV and global bayesian approaches. We notice that for
almost all the considered models, the global bayesian approach is better than the UCV
for small sample sizes, but for medium and large sample sizes, the UCV works better.

• The adaptive Bayesian approach with two different kernels (gamma for HDR and BSPE
for LDR), outperforms the adaptive Bayesian approach with the same kernel (BSPE for
both HDR and LDR regions), for models D1 and D3 for almost all sizes considered.
Contrary to the D2 model, where the adaptive Bayesian approach with the same kernel
(BSPE) is better.

The comparison is also given in Figure 1 and 2. That presents the plots of the pdf estimates
for D1, D2 and D3, with UCV and bayesian method for the choice of bandwidth parameter.
The results are given for sample size n = 200 and for one replication. We can observe that the
smoothing quality is satisfactory for the adaptive Bayesian approach, practically for the three
considered models. The adaptive Bayesian Gamma-BSPE approach, reproduces well the bimo-
dality of the D3 model. We also notice that the smoothing quality by the classical UCV approach
is poor for the D2 model.

6. APPLICATION TO REAL HT DATA

In this section, we illustrate the performance of the proposed estimator on two real HT data
sets defined below :

— Web-traffic HT data : These data represent the size of different web files (pdf, html,
images, video, etc.) measured in Kilo Octet from world cup (French, June 1998) server.
These data are collected for n = 312 queries [ZIANE et al.(2018)].
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TABLE 2 – Average ISE (ISE) (with average h (h) brackets) based on 100 replications for D1,
D2 and D3 distributions

Density n ISEUCV ISEBayes−global ISEBayes−AdapBSPE ISEBayes−AdapGam−BSPE

(hUCV ) (hBayes−global) (hHDR,hLDR) (hHDR,hLDR)
10 0.07298109 0.03339965 0.03116670 0.02446340

(1.29691400) (0.41601620) (0.41572240,0.43166210) (0.42456180, 0.43005550)
50 0.01992840 0.00867429 0.00944265 0.00944339

D1 (0.66709700) (0.56194740) (0.21892850, 0.35730160) (0.15519320, 0.35793270)
100 0.00812029 0.013134670 0.00545582 0.00481987

(0.14878390) (1.23848300) (0.18921140, 0.26361370) (0.12187420, 0.26551030)
250 0.00464116 0.01115482 0.00421646 0.00226334

(0.09514660) (1.09769077) (0.90787800, 0.25401930) (0.07194098, 0.24740547)

10 0.18070430 0.09793666 0.08833576 0.09152228
(0.63006541) (0.47316392) (0.42567424, 0.42613821) (0.35051259, 0.41623607)

50 0.03882595 0.02937818 0.01933364 0.02062382
D2 (0.06591049) (0.23530874) (0.33260233, 0.33640982) (0.28967948, 0.34092399)

100 0.04370892 0.01372667 0.00810524 0.01026966
(0.02410700) (0.20874785) (0.24873629, 0.29847000) (0.21676625, 0.29696059)

250 0.02080307 0.00948743 0.00499513 0.00684447
(0.018870869) (0.18647112) (0.18162649, 0.1989421610) (0.16955425, 0.18021157)

10 0.0232216915 0.02009696 0.01920234 0.01701824
(1.167033916) (0.80816964) (0.36240572, 0.92421295) (0.37011558, 0.40727976)

50 0.02737774 0.00871603 0.00807053 0.00781293
D3 (1.09355602) (0.15824070) (0.15292585, 0.29172937) (0.15211303,0.27504394)

100 0.015952670 0.00477119 0.00370813 0.00364616
(0.08969938) (0.16248214) (0.10336488, 0.29077918) (0.10264756, 0.26801841)

250 0.00968110 0.00428933 0.00238951 0.00237538
(0.03910971) (0.12370519) (0.07658197, 0.19733326) (0.09667585, 0.16960317)
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FIGURE 1 – The estimators of heavy tailed densities D1 and D2 with n= 200, with BS-PE kernel
and (global, adaptive and UCV) methods.

FIGURE 2 – The estimators of heavy tailed densities D3 with n = 200, with BS-PE kernel and
(global, adaptive and UCV) methods.
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TABLE 3 – Descriptive summary of the Web-traffic data set [ZIANE et al.(2018)].
Data set n Max Min Median Mean SD CS CK

Web-traffic 312 65.613 0.042 1.362 4.081 8.520 5.044 27.897

TABLE 4 – Descriptive summary of the vinyl chloride data set.
Data set n Max Min Median Mean SD CS CK

vinyl chloride 34 8.000 0.100 1.150 1.879 1.952 1.603 5.005

— Vinyl chloride data : These data present the vinyl chloride data obtained from clean up-
grading, monitoring wells in mg/L ; this data set was used by [BHAUMIK et al.(2009)].

The table 3 and 4 provide the description summaries for Web-traffic and vinyl chloride data
respectively.

Now, we apply kernel estimators to estimate the density for trafic web and vinyl chloride
data, based on different selection methods of the smoothing parameter (UCV, bayesian(global)
and bayesian adaptive(BS-PE(ν = 2) kernel and Gammma-BSPE(ν = 2) kernel)). The bayes
variable bandwidths estimates were obtained with prior parameters α = 2.5 and β = n4/5. The
figure 3 shows, that all the methods are capable of reproducing the unimodality of these data. we
observe that, the smoothing quality is satisfactory for almost all the considered methods.

7. CONCLUSIONS

In this paper, we have proposed a new gamma-BSPE kernel estimator. It is based on the prin-
ciple of subdividing the HT dataset into two regions (LDR and HDR) and associating to each
region the gamma and BSPE kernels. The smoothing parameter is determined by the adaptive
Bayesian approach. The simulation study showed that the adaptive bayesian approach with the
gamma-BSPE kernels and with the same BSPE kernels, performs better than the global bayesian
approach and the classical UCV approach. This study also showed that in some cases the esti-
mator with the gamma-BSPE kernels, performs better than the estimator with the same BSPE
kernels for both regions, contrary to other cases.
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