
Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

TWO-MACHINE FLOW SHOP SCHEDULING PROBLEM
WITH TWO COMPETING AGENTS

Abdennour AZERINE

RECITS laboratory,
Faculty of Mathematics,

USTHB University,
BP 32 El-Alia, Bab Ezzouar,

Algiers, Algeria.
Centre de Recherche

sur l’Information Scientifique et
Technique (CERIST)

05, Rue des 3 frères aissou,
Ben Aknoun Algiers Province,

Algeria

Mourad BOUDHAR

RECITS laboratory,
Faculty of Mathematics,

USTHB University,
BP 32 El-Alia, Bab Ezzouar,

Algiers, Algeria.

Djamal REBAINE

Département d’informatique et de mathématique,
Université du Québec à Chicoutimi, Qubec, Canada

ABSTRACT

In this article, we study the two-machine flow shop scheduling with two competing agents. The
complexity of special cases is investigated with respect to the makespan and the total completion
time. The second part concerns the minimization of the linear combination of the total tardiness
and the number of tardy jobs. We presented a branch-and-bound algorithm along with a heuristic
and a meta-heuristic. A computational analysis is then conducted.

1. INTRODUCTION

The usual flow shop problem can be described as follows, given n jobs to be processed on m
machines. Each job must be processed first on machine 1, and then on machine 2, and and so on
until machine m. Each job has its associated processing time on each machine. It is assumed that,
at each instant of time, any machine can process only one job, and a job is processed by at most
one machine. Let us observe that it is a common practice in the literature to focus on permutation
schedules when studying the flow shop models, even though this assumption of restricting a flow
shop to a permutation is only true for regular criteria and m≤ 3.

With respect to the makespan criterion, the two-machine flow shop problem has been proved
to be polynomially solvable in O(n logn) by [Johnson(1954)]. The problem becomes strongly
N P-hard with respect to the total completion time criterion (see [Garey et al.(1976)Garey,
Johnson, and Sethi]), so it is also with respect to the total tardiness.

A branch-and-bound algorithm along with several lower bounds and dominance rules has
been proposed by [Kim(1993)], which can solve all instances with 16-jobs and more then half

ICMA2021-1

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

instance with 24-jobs. This algorithm is shown that it outperforms the algorithm provided in [Sen
et al.(1989)Sen, Dileepan, and Gupia] that can solve instances with only 12 jobs.

For the two-machine flow shop with regard to the total tardiness criterion, a branch-and-
bound algorithm with new dominance conditions is developed in [Pan and Fan(1997)] that can
solve instances up to 16 jobs in less than one-hour, whereas [Pan et al.(2002)Pan, Chen, and
Chao] implemented four dominance rules and a lower bound in a branch-and-bound scheme that
can solve instances up to 18 jobs and most instances with 20 jobs withing one-hour.

A few papers dealt with the two-machine flow shop with respect to tardy jobs criterion. Let us
recall the corresponding decision problem is strongly N P-hard ([Lenstra et al.(1977)Lenstra,
Kan, and Brucker]). [Lawler and Moore(1969)] addressed this problem with a common due date
and provided a pseudo-polynomial dynamic programming based algorithm with running time
O(nd2), where d is the value of the common due date. [Hariri and Potts(1989)] considered the
m-machine permutation flow shop problem and proposed a branch-and-bound algorithm using
lower bounds based on the solution of single machine sub-problems that can solve instances with
20 jobs for the three-machine problem, and up to 15 jobs for the four-machine. When it comes to
the two-agent flow shop problem, this problem has received increasing attention in recent years.
Before proceeding any further, we briefly define this problem; more details on this are given in
Section 2. In a two-agent scheduling problem, the set of jobs is divided into two subsets to be
processed on the same set of machines. Each subset has to be scheduled with respect to a given
criterion. Let us now mention the following results. [Agnetis et al.(2004)Agnetis, Mirchandani,
Pacciarelli, and Pacifici] studied the complexity of this problem with respect to the makespan
criterion for both agents. They provided an N P-hardness result for the ε-constraint model
where the objective in this approach is to minimize the criteria of the first agent respecting the
constraint that the cost function of the second agent is below or equal a given fixed value. This
model has also been investigated by [Luo et al.(2012)Luo, Chen, and Zhang], and proved that it
is weakly N P-hard. A second approach, involving the weighted combination of the same two
criterias (makespan for both agents) to a single objective function, is also considered in the the
same paper. The authors showed that it is weakly N P-hard, they proposed pseudo-polynomial
time algorithm that runs in O(nP4) where P is the sum of the processing times of all the jobs on
the two machines and a fully polynomial-time approximation scheme.

In the front of well solvable cases, [Mor and Mosheiov(2014)] extended some polynomial
single-machine problems to the proportionate flow shop with two competing agents. For the
first agent, they considered three objective functions to be minimized : maximum cost of all the
jobs, total completion time, and number of tardy jobs ; with the restriction that the value of the
maximum cost function of the second agent does not exceed a given value.

[Ahmadi-Darani et al.(2018)Ahmadi-Darani, Moslehi, and Reisi-Nafchi] studied the two-
machine flow shop problem to minimize the total tardiness of jobs for the first agent given that
the makespan of the second agent does not exceed a given upper bound. The authors presented
a mathematical programming model, a tabu search algorithm and some heuristics. A variable
neighborhood search for the two-agent flow shop scheduling problem with the makespan for the
first agent and the total tardiness of the second agent is developed in [Lei(2015)].

In this paper, we consider the two-machine flow shop scheduling problem with two compe-
ting agents. The first agent aims to minimize the total tardiness, whereas for the second agent.
the goal is the minimization of the total number of tardy jobs. We use a linear combination of the
two criteria as a single objective function. Let us note that [Lee et al.(2010)Lee, Chen, and Wu]
studied this problem using the ε-constraint approach. They considered the total tardiness of the
jobs as an objective function for the first agent with zero tardy jobs for the second agent. They
proposed a branch-and-bound and simulated annealing algorithms. Their results showed that the
branch-and-bound algorithm can solve instances with 12 jobs in small amount of time.

ICMA2021-2

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

2. PROBLEM FORMULATION

We consider the two-machine flow shop problem with two agents (users) A and B, competing
to use a set of shared machines M = {M1,M2, . . . ,Mm} (In our case m = 2). Each agent has his
own set of independent jobs JX where X = {A,B}. Let JX

i denote job i of agent X , its processing
time on machine M j is denoted by pX

i j, its due date by dX
i and its completion time by CX

i j where
i∈ JX , and j ∈M.To simplify the notation, we denote in some cases by aX

i and bX
i the processing

time of job i of agent X on machine M1 and M2, respectively, and CX
i the completion time of

job i on the last machine. Let T X
i = max{0,CX

i − dX
i } be the tardiness of job i and UX

i = 0 if
CX

i −dX
i ≤ 0, and 1 otherwise. Each agent has his own objective function γX to minimize.

The usual way to describe and classify scheduling problems, we use the three-field notation
α|β |γ proposed by [Graham et al.(1979)Graham, Lawler, Lenstra, and Kan]. We suppose that the
processing route of each job is the same for the jobs of a given agent and it is known in advance.
However, it could differ from one agent to another. To be able to distinguish between them, we
provide the processing route for the first agent followed by the processing route of second agent
in the β field. As an example for agent A and B, respectively, notation M1 7→M2,M2 7→M1 mean
that A processes all his jobs on M1 and then on M2, whereas B processes his jobs on M2 and then
on M1. In the remainder of this paper, we use the following notation to describe the processing
route for each agent :

M j 7→Mk : The specified agent processes his jobs on M j and then on Mk.

M j : The specified agent processes his jobs on M j only.

In the case where the above notation is not specified, this means that all the jobs have the
same processing route and each job must be processed on M1 and then on M2. Our aim is to
schedule these jobs non-preemptively to minimize the weighted combination of the two criteria.
In the next section, we address the complexity status of the flow shop problem with various
settings and objective functions.

3. COMPLEXITY RESULTS

Theorem 1 F2|M1 7→M2,M2 7→M1, pi j = pi|CA
max +CB

max is N P-hard.

Corollary 2 J2|ni ≤ 2, pi j = pi|CA
max +CB

max is N P-hard.

Theorem 3 F2|M1 7→M2,M2 7→M1, pi j = pi|CA
max + ∑

i∈JB

CB
i is N P-hard.

Theorem 4 F2|M1 7→M2,M2, pA
i j = pi|CA

max +CB
max is N P-hard.

Corollary 5 The two problems F3|M1 7→M2,M2 7→M3|CA
max +CB

max and F3|M1 7→M2,M3 7→
M2|CA

max +CB
max are N P-hard even if pi j = pi.

Theorem 6 F2|M1 7→M2,M2, pA
i j = pi|∑

i
CA

i +CB
max is N P-hard.

Theorem 7 F2|M1 7−→M2,M1|CA
max +CB

max is N P-Hard.

Corollary 8 F3|M1 7−→ M2,M1 7−→ M3|CA
max +CB

max and F3|M1 7−→ M2,M3 7−→ M1|CA
max +

CB
max are N P-hard.

Theorem 9 F2|M1 7−→M2,M1|CA
max +∑

i
CB

i is N P-Hard.

ICMA2021-3

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

4. BRANCH-AND-BOUND

In the next sections, we will address the two-agent flow shop problem with two different
objectives, this problem can be formulated as follows : Two agents A and B compete to process
their jobs on two shared machines, starting by M1 followed M2. The objective of the first agent
is to minimize the total tardiness while the objective of the second agent is to minimize the
number of tardy jobs, we will use the linear combination as an approach to find a solution.
This problem is donated by : F2||α× ∑

i∈JA

T A
i +β × ∑

i∈JB

UB
i where 0 ≤ α ≤ 1 and α +β = 1 or

F2||λ × ∑
i∈JA

T A
i +(1−λ)× ∑

i∈JB

UB
i where 0≤ λ ≤ 1. In order to find an optimal solution for this

problem, we propose an algorithm based on branch-and-bound.
Let us recall that a branch and bound algorithm consists of breaking up the problem under

study into successively smaller sub-problems, computing bounds on the objective function as-
sociated with each sub-problem, and using them to discard certain of these sub-problems from
further consideration. The algorithm ends up when each sub-problem has either produced a fea-
sible solution, or is shown to contain no better solution than the one already in hand. The best
solution found at the end of the algorithm is the global optimum.

4.1. Upper Bounds

Given a node in the branching tree with a partial sequence π,πc, where π is a partial schedule
contains k-jobs with a fixed sequence of jobs, and πc is the unscheduled part with n− k. We
proposed a heuristic which is used as an upper bound, to find a feasible solution that has two
phases. The first phase is to generate a priority list that is constructed using the jobs in πc,
whereas the second phase is used to improve the quality of the solution through a swap operator
for the jobs of πc. The obtained value is used as an upper bound on the value of the node.

The heuristic can be used to produce a feasible solution when k = 0, and generate a global
upper bound.

Algorithm 1 1: Heuristic
2: Create and initial a priority list using the jobs in πc ;
3: Evaluate the current list, and let Z be the value of the objective function ;
4: for i← k+1 to n do
5: for j← k+1 to n do
6: Swap the job in position i with the job in position j ;
7: Evaluate the new solution and let Znew be the value of the objective function ;
8: if Z < Znew then
9: Z← Znew ;

10: else
11: Swap the job in position i with the job in position j ;

This procedure needs a priority list to be executed. So the first step to be done is the construction
of an initial list. In our case, we used five different priority lists, namely L1, . . . ,L5.

L1 : Order the jobs according to the non-decreasing order of the due dates.

L2 : Calculate for each job i the value di−max{ pi1, pi2}. Order the jobs according to the
non-decreasing of the obtained values.

L3 : Calculate for each job i the value max{ pi1, pi2}. Order the jobs according to the non-
decreasing of the obtained values.

L4 : We use Johnson’s rule. Construct two subset J1 and J2 where J1 = {i|pi1 <= pi2} and
J2 = {i|pi1 > pi2}. Order the jobs of J1 in increasing order of pi1 (SPT), and the jobs in
the set J2 in decreasing order of pi2 (LPT). The new list is J1 follows by J2.

ICMA2021-4

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

L5 : This list is obtained using the same method as L4 except that we use di− pi1 and di− pi2
as an input for the SPT and LPT order.

4.2. Lower Bounds

In this subsection, we provide lower bounds. Assume that π,πc is a sequence, where π is a
partial schedule contains k-jobs already scheduled, and πc is the unscheduled part with n−k jobs.
Let n′A and n′B denote the number of unscheduled jobs of agent A and B respectively. Furthermore,
let t1 and t2 be the completion time of the schedule π on M1 and M2. Suppose that the processing
times of the unscheduled jobs are a1,a2, ...,an−k on M1 and b1,b2, ...,bn−k on M2, We denote by

dX
(1),d

X
(2), ...,d

X
(nX)

the due dates ordered according to the EDD rule, and by aX
(1),a

X
(2), ...,a

X
(nX) the processing times

on M1 ordered according to the SPT rule. Similarly, we denote bX
(1),b

X
(2), ...,b

X
(nX) the processing

times on M2 ordered according to the SPT rule for X = {A,B}. Then we have :

C[k+1](S)≥max{t1 +aA
(1), t2}+bA

(1) ≥ t1 +aA
(1)+bA

(1),

where CA
[k+1](S) denotes the completion time for the [k+1] job of agent A. The same idea gives

a lower bound for the completion time of the job k+ j as CA
[k+ j](S) ≥ t1 + bA

(1)+
j

∑
i=1

aA
(i) where

1≤ j ≤ n′A.
We calculate a lower bound for the sequence using the obtained completion time for agent

A, we donate it as LBA
1 where LBA

1 = f +
n′A
∑

i=1
max{C[k+ j](S)−d(j)),0} and f is the value of the

objective function for the first partial scheduled jobs.

Similarly, a lower bound LBA
2 can be obtained using the processing times on M2. Employing

the fact that C[k+1](S)≥max{t1 +aA
(1), t2}+b(1) ≥ t2 +bA

(1), we can derive that the completion

time for the k+ j job is : C[k+ j](S)≥ t2 +
j

∑
i=1

bA
(j) for 1≤ j ≤ n′A.

For the second agent, we can derive two lower bounds LBB
1 and LBB

2 . This can be done
by constructing two instances of a single machine problem with an objective to minimize the
number of tardy jobs which is known to be solved by More’s algorithm as follows : For the first
instance, we set the number of jobs equal to nB and the processing time pi = pB

i1 and due date
di = dB

i for i = 1, . . . ,n′B, we consider that the first agent start processing his jobs at time t1+bB
(1).

The same way, we can construct a second instance by changing the processing time to pi = pB
i2

and the start time to t2. By solving these two instances, we get two lower bounds. In our branch-
and-bound algorithm, we construct a tree with n level. For a given level l−1 with l−1 < n, we
have a sub-sequence π represents a node with l−1 fixed jobs. To perform the next iteration, we
create l different children, by adding unscheduled jobs at the end of the current sub-sequence π

to get l schedules. The obtained solutions will be evaluated and compared with the upper bounds.
Using the fact that l− 1 < n, we have at least one child. If l = n, we get a complete sequence
S. The best found solution is updated if the objective function of one of the produced solutions
is less than the current. Otherwise, we have a partial schedule with length l < n. The child will
be discarded when it is dominated by using the dominance properties or the value of its lower
bound is greater than the value of the best feasible solution encountered so far.

ICMA2021-5

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

4.3. Dominance rules

Property 1 If a job i ∈ JB is tardy, then there exists an optimal schedule where i is sequenced at
the end of the sequence.

Property 2 For two consecutive jobs i and j (even if they belong two different agents), if C j(S)≤
d j, Ci(S′)≤ di and C j(S)>Ci(S′) then schedule j immediately after i.

Property 3 For two consecutive jobs i and j, if i ∈ JA, j ∈ JB , C j(S) ≤ d j and Ci(S′) ≥C j(S)
then schedule j immediately after i.

4.4. Branching rule

To explore the tree, we use breadth-first strategy until we reach a pre-defined level r. Then
for each node in level r, we start depth-first traversing search strategy. In case that r = 0, we
obtain the classic depth-first strategy.

5. META-HEURISTICS

Since the problem is strongly N P-hard, the heuristic approach is well justified. In this
section, we propose two meta-heuristics.

5.1. Tabu search

Tabu search (TS) is a meta-heuristic based on a neighborhood structure. TS starts with an
initial solution. In our case, we choose the best solution found by the heuristics. Each iteration,
we choose the best solution from the neighborhood. A neighbor solution can be generated with
various methods : swap, insertion, etc. For more details, see e.g. [Nowicki and Smutnicki(1996)].

The general procedure can be resumed as follows :

Algorithm 2 (h) 1: S← GenerateInitialSolution() ;
2: Sbest ← S ;
3: TabuList← φ ;
4: while Termination conditions not met do
5: Generate a set of neighbor solutions using moves that are not in tabu list ;
6: Evaluate the obtained solutions ;
7: S← the best obtained solution ;
8: if S is better the Sbest then
9: Sbest ← S ;

10: TabuList← a move that generate the new solution from old solution S ;
11: if Inspiration criteria is met then
12: delete some moves from the TabuList ;
13: return the best found solution Sbest ;

To avoid re-visiting a solution previously generated, we use a tabu list that contains pre-
vious solutions. This list is also used to exit local minima. The algorithm stops when pre-defined
criteria are satisfied.

ICMA2021-6

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

A move : To generate a new solution, we used two types of moves :
— Swap : we pick a position i randomly. Next, we swap the job in position i with a job

in position j,∀ j = 1, ..,n, i ̸= j respecting the condition that the two positions i& j
are not in tabu list.

— Insertion : we choose a job in position i randomly, then we move this job after a job
in position j,∀ j = 1, ..,n, i ̸= j respecting the condition that the two positions i& j
are not in tabu list.

Tabu list : We use a list to save moves. A move is the position i and a position j that gives
the best new solution. This move is added to the end of the list.

Aspiration criterion : To make moves acceptable again, we set the length of the tabu list to
20. When the length of this list reached its maximum, the oldest five moves are deleted.

Stopping Criterion The number of operations, set to 1000, is used as a termination condi-
tion.

6. COMPUTATIONAL STUDY

In order to assess the performance of the proposed algorithm, we carried out numerical
experiments with respect to the efficiency of the mathematical model, and the branch-and-bound
algorithm in terms of the CPU time. We also studied the quality of the solutions produced by
the meta-heuristic algorithm. The proposed branch-and-bound algorithm and the meta-heuristic
were coded using C++. The computational experiments were carried out on a PC with Intel(R)
Core(TM) i7-2670QM, CPU 2.20 GHZ and 8.00 GB RAM on Windows 7 operating system.

6.1. Computational results Exact methods

In our computational experiments, we generate the instances randomly. The integer pro-
cessing times were generated from a uniform distribution [1,25] and [25,100], the due dates
were generated from another uniform distribution over the integers between T (1− τ−R/2) and
T (1− τ + R/2) where R is a parameter called the due date range, and τ is called the tardi-
ness factor. The combination of (τ,R) took the values of (0.25,0.25), (0.25,0.50), (0.25,0.75),
(0.50,0.25), (0.50,0.50), and (0.50,0.75). The value T is the summation of the processing times
on machine M2 and the minimum processing time of all jobs on machine M1. Twenty instances
were generated for each combination and interval. Problems with 15 and 16 jobs were conside-
red. The number of jobs of agent A is set to f loor{n/2} (the greatest integer less than or equal to
n/2) and λ = 0.1. CPU time limited to one hour, we count the number of times an optimal solu-
tion is found, we show also the maximum, the minimum and the average time to find solutions.
The results were summarized in Table, 1 and 2. We used the following notation :

Nb opt : Number of optimal solution.

B&B : Branch-and-bound.

For n = 15, we can see in Table 1 that the branch-and-bound algorithm can solve all the
instances in no time with different value of τ and R. It becomes easier to solve instances when τ

and R are increasing.
Table 2 presents the performance of the branch-and-bound algorithm for n = 16, it can be

seen that solving instances with this size is getting harder when r = 0.25 and R = 0.25 or R =
0.5 but it can solve all the instances withing one hour. This lack of performance is due to the
weakness of the lower bound. However, it can solves all the instances in no-time for the rest
combination of r and R.

ICMA2021-7

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

Interval [1,25] [25,100]
τ R f B&B B&B

0.25

0.25

Nb opt 20 20
Min 1.523 0.914
Max 22.784 17.005
Mean 6.91905 5.02485

0.50

Nb opt 20 20
Min 0.95 0.977
Max 9.329 5.556
Mean 2.8678 2.56955

0.75

Nb opt 20 20
Min 0.775 0.766
Max 4.573 1.699
Mean 1.26375 0.9591

0.50

0.50

Nb opt 20 20
Min 0.823 0.776
Max 2.123 1.275
Mean 1.1448 0.86685

0.75

Nb opt 20 20
Min 0.787 0.769
Max 1.185 0.808
Mean 0.86505 0.7837

TABLE 1 – The Performance of the B&B algorithm (n = 15).

6.2. Computational results for the heuristics

For small size instances with 15 jobs, we experimentally compared the effectiveness of
solutions generated by the meta-heuristic procedure with the optimal solutions produced by
the branch-and-bound procedure, the data is generating according to two different processing
time intervals ([1,25] and [25,100]) and due dates range (The combination of τ and R with
τ ∈ {0.25,0.5} and R ∈ {0.25,0.5,0.75}), the obtained results are reported in Table 3.

From Table 3, we can observe that for τ = R, the rules L3 and L1 outperform the other rules.
But L1 has the best performance for the general cases. L2 gives a near performance to L1, and
the two rules L4 and L5 are the worst rules even if they are based on Jackson’s rule. For tabu
search algorithm, we can see that for τ = 0.25, the swap move is the best option. However, for
τ = 0.50, the insertion move gives better performance.

7. CONCLUSION

Our study focuses on the two-machine flow shop with two competing agents to minimize
the linear combination of the total tardiness and the number of tardy jobs. We discussed the
computational complexity of various special cases. To solve it optimally, we proposed a pro-
cedure based on the branch-and-bound algorithm which uses several dominance properties and
bounds. Moreover, a heuristic based on different priority lists along with a tabu search algorithm
that uses two different moving mechanisms are proposed to find a near-optimal solution. Finally,
computational results for randomly generated problem instances are reported.

ICMA2021-8

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

Interval [1,25] [25,100]
r R mean max mean max

0.25
0.25 750.9206 2087.8 241.056 728.299
0.5 402.2024 1101.51 1624.8056 2945.8
0.75 91.5664 406.83 0.2634 1.182

0.25 0.5 1.412 5.886 0.2698 1.093
0.75 8.6002 35.427 0.053 0.144

TABLE 2 – The Performance of the B&B algorithm (n = 16).

8. REFERENCES

[Agnetis et al.(2004)Agnetis, Mirchandani, Pacciarelli, and Pacifici] Allesandro Agnetis,
Pitu B. Mirchandani, Dario Pacciarelli, and Andrea Pacifici. Scheduling problems with
two competing agents. Oper. Res., 52(2) :229–242, March 2004. ISSN 0030-364X.

[Ahmadi-Darani et al.(2018)Ahmadi-Darani, Moslehi, and Reisi-Nafchi] M Ahmadi-Darani,
G Moslehi, and M Reisi-Nafchi. A two-agent scheduling problem in a two-machine
flowshop. International Journal of Industrial Engineering Computations, 9(3) :289–306,
2018.

[Garey et al.(1976)Garey, Johnson, and Sethi] M. R. Garey, D. S. Johnson, and Ravi Sethi. The
complexity of flowshop and jobshop scheduling. Math. Oper. Res., 1(2) :117–129, May
1976. ISSN 0364-765X.

[Graham et al.(1979)Graham, Lawler, Lenstra, and Kan] Ronald L Graham, Eugene L Lawler,
Jan Karel Lenstra, and AHG Rinnooy Kan. Optimization and approximation in determi-
nistic sequencing and scheduling : a survey. In Annals of discrete mathematics, volume 5,
pages 287–326. Elsevier, 1979.

[Hariri and Potts(1989)] AMA Hariri and CN Potts. A branch and bound algorithm to minimize
the number of late jobs in a permutation flow-shop. European Journal of Operational
Research, 38(2) :228–237, 1989.

[Johnson(1954)] Selmer Martin Johnson. Optimal two-and three-stage production schedules
with setup times included. Naval research logistics quarterly, 1(1) :61–68, 1954.

[Kim(1993)] Yeong-Dae Kim. A new branch and bound algorithm for minimizing mean tar-
diness in two-machine flowshops. Computers & Operations Research, 20(4) :391 – 401,
1993. ISSN 0305-0548.

[Lawler and Moore(1969)] Eugene L Lawler and J Michael Moore. A functional equation and
its application to resource allocation and sequencing problems. Management Science, 16
(1) :77–84, 1969.

[Lee et al.(2010)Lee, Chen, and Wu] Wen-Chiung Lee, Shiuan-kang Chen, and Chin-Chia Wu.
Branch-and-bound and simulated annealing algorithms for a two-agent scheduling pro-
blem. Expert Syst. Appl., 37(9) :6594–6601, September 2010. ISSN 0957-4174.

[Lei(2015)] Deming Lei. Variable neighborhood search for two-agent flow shop scheduling
problem. Computers & Industrial Engineering, 80 :125–131, 2015.

[Lenstra et al.(1977)Lenstra, Kan, and Brucker] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Bru-
cker. Complexity of machine scheduling problems. In P.L. Hammer, E.L. Johnson, B.H.
Korte, and G.L. Nemhauser, editors, Studies in Integer P rogramming, volume 1 of Annals
of Discrete Mathematics, pages 343 – 362. Elsevier, 1977.

[Luo et al.(2012)Luo, Chen, and Zhang] Wenchang Luo, Lin Chen, and Guochuan Zhang. Ap-
proximation schemes for two-machine flow shop scheduling with two agents. Journal of
Combinatorial Optimization, 24(3) :229–239, 2012.

ICMA2021-9

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

interval τ R f L1 L2 L3 L4 L5 T SS T SI

[1,25]

0.25

0.25

opt 5 3 4 4 4 17 13
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 0.810 0.810 0.767 1.209 0.952 0.116 0.133
mean 0.249 0.240 0.272 0.371 0.367 0.009 0.024

0.5

opt 9 6 4 5 2 17 17
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 1.000 2.800 2.800 4.000 6.600 0.056 0.052
mean 0.285 0.555 0.524 0.634 0.979 0.006 0.004

0.75

opt 10 11 6 2 1 16 15
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 1.000 1.591 2.850 2.850 2.850 0.950 0.950
mean 0.235 0.252 0.844 1.112 1.318 0.110 0.106

0.5

0.5

opt 0 0 2 0 0 5 7
min 0.173 0.090 0.000 0.163 0.090 0.000 0.000
max 0.667 0.667 0.701 0.727 0.701 0.288 0.288
mean 0.323 0.307 0.237 0.409 0.361 0.061 0.057

0.75

opt 0 1 0 1 1 3 6
min 0.079 0.000 0.062 0.000 0.000 0.000 0.000
max 0.966 0.500 1.500 1.000 1.000 0.310 0.310
mean 0.301 0.305 0.385 0.393 0.422 0.093 0.092

[25,100]

0.25

0.25

opt 5 3 3 3 3 18 13
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 4.750 4.750 4.750 4.750 4.750 4.750 4.750
mean 0.516 0.564 0.553 0.595 0.636 0.245 0.309

0.5

opt 14 13 9 5 2 20 18
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 1.000 1.000 2.000 2.000 2.000 0.000 0.500
mean 0.192 0.242 0.583 0.683 0.842 0.000 0.028

0.75

opt 12 13 6 4 2 17 14
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 1.000 2.000 3.000 3.800 2.000 1.000 1.900
mean 0.337 0.351 0.942 1.125 1.283 0.111 0.303

0.5

0.5

opt 3 2 6 4 5 13 9
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 0.600 0.600 0.500 0.500 0.500 0.250 0.250
mean 0.255 0.265 0.189 0.190 0.179 0.044 0.065

0.75

opt 5 4 2 1 3 6 5
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 0.905 1.000 0.891 0.667 0.667 0.333 0.469
mean 0.314 0.372 0.356 0.355 0.314 0.161 0.181

TABLE 3 – The Performance of the heuristic and meta-heuristics vs. the branch-and-bound (n =
15).

[Mor and Mosheiov(2014)] B. Mor and G. Mosheiov. Polynomial time solutions for scheduling
problems on a proportionate flowshop with two competing agents. Journal of the Opera-
tional Research Society, 65(1) :151–157, Jan 2014. ISSN 1476-9360.

[Nowicki and Smutnicki(1996)] Eugeniusz Nowicki and Czesław Smutnicki. A fast tabu search
algorithm for the permutation flow-shop problem. European Journal of Operational Re-

ICMA2021-10

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

search, 91(1) :160–175, 1996.

[Pan and Fan(1997)] Jason Chao-Hsien Pan and En-Tsu Fan. Two-machine flowshop schedu-
ling to minimize total tardiness. International Journal of Systems Science, 28(4) :405–414,
1997.

[Pan et al.(2002)Pan, Chen, and Chao] Jason Chao-Hsien Pan, Jen-Shiang Chen, and Chii-Ming
Chao. Minimizing tardiness in a two-machine flow-shop. Computers & Operations Re-
search, 29(7) :869–885, 2002.

[Sen et al.(1989)Sen, Dileepan, and Gupia] Tapan Sen, Parthasarati Dileepan, and Jatinder N.D.
Gupia. The two-machine flowshop scheduling problem with total tardiness. Computers &
Operations Research, 16(4) :333 – 340, 1989. ISSN 0305-0548.

ICMA2021-11

	1 Introduction
	2 Problem formulation
	3 Complexity results
	4 Branch-and-Bound
	4.1 Upper Bounds
	4.2 Lower Bounds
	4.3 Dominance rules
	4.4 Branching rule

	5 Meta-heuristics
	5.1 Tabu search

	6 Computational study
	6.1 Computational results Exact methods
	6.2 Computational results for the heuristics

	7 Conclusion
	8 References

