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ABSTRACT

In this paper we consider a class of nonhomogeneous p-Laplacian elliptic equations with a cri-
tical Sobolev exponent and multiple Hardy type terms. By Ekeland variational principale on
Nehari manifold and mountain pass lemma, we prove the existence of multiple solutions under
sufficient conditions on the data and the considered parameters.

1. INTRODUCTION

In this paper we study the existence and multiplicity of positive solutions for the quasilinear
elliptic problem :

(P)

 −∆pu−∑
k
i=1

µi

|x−ai|p
|u|p−2 u = |u|p

∗−2 u+∑
k
i=1

λi

|x−ai|p−si
|u|p−2 u+ f in Ω

u = 0 on ∂ Ω,

where Ω is an open smooth bounded domain of RN(N ≥ 3),1 < p < N, k ∈ N∗, ai ∈ Ω, λi
and µi are nonnegative parameters and si are positive constants (1≤ i≤ k) ; f is a bounded
measurable function which is positive in each neighborhood of ai. Here p∗ = pN

N−p denotes the

critical Sobolev exponent and ∆pu = div(|∇u|p−2
∇u) is the p-Laplacian operator.

Problem (P) is related to the Hardy inequality [7] :

∫
Ω

|u|p

|x−a|p
dx≤ 1

µ

∫
Ω

|∇u|p dx, for all u ∈C∞
0 (Ω), (1)

where a ∈ Ω and µ =
(

N−p
p

)p
is the best Hardy constant. We shall work with the space W =

W 1,p
0 (Ω) the completion of C∞

0 (Ω) with respect to the norm

‖u‖ :=

(∫
Ω

(
|∇u|p−

k

∑
i=1

µi

|x−ai|p
|u|p
)

dx

)1/p

,

with 1 < p < N, µi > 0 for i = 1, ...,k and ∑
k
i=1 µi < µ. In particular, Hardy’s inequality shows

that this norm is equivalent to the usual norm (
∫

Ω
|∇u|p dx)1/p.

Many research works related to problem (P) were considered by some authors in recent
years. We mention especially the interesting works of :
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-Abdellaoui et. al. [1] studied the following problem :

−∆pu =
λh(x)
|x|p

|u|q−1 u+g(x) |u|p
∗−1 u in RN ,

where h and g are two bounded measurable functions, they proved the existence and nonexistence
results for two cases, they first proved for the equation with a concave singular term, then they
studied the critical case related to hardy inequality, providing a description of the behavior of
radiale solutions of the limiting problem and obtaining existence and multiplicity results for
perturbed problems through variational and topological arguments.

-Haidong Liu proved in [8] the existence of two solutions of the following problem :{
−∆pu = µV (x) |u|p−2 u+ |u|p

∗−2 u+λ f (x,u) in Ω

u = 0 on ∂ Ω,

under some sufficient assumptions on V, f , λ and µ, where V (x) is a linear weight and f is a
positive function. The case p = 2 has been treated by Chen [3], who proved the existence of at
least m positive solutions.

-Hsu studied in [10] the existence and multiplicity of positive solutions of the quasilinear
elliptic problem :{

−∆pu−∑
k
i=1

µi

|x−ai|p
|u|p−2 u = |u|p

∗−2 u+λ |u|q−2 u in Ω

u = 0 on ∂ Ω,

using Nehari manifold and mountain pass lemma he prove the existence of two solutions for
1≤ q < p and some assumptions on the parameters µi,λ .

Remark 1 The case p = 2 in the problem considered (P) has been treated in [2].

To state our results, we need some notions.
Let Ai, Bi (Ai < Bi) be the zeroes of the function g(t) = (p−1)t p− (N− p)t p−1 +µi, t ≥ 0

(for p = 2 we have Ai =
√

µ−
√

µ−µi, Bi =
√

µ +
√

µ−µi), 1≤ i≤ k.
Let us denote

s∗i = p(1+Bi)−N

λ
∗ := min

j=1,..,k

{
λ1
(
s j
)}

,

where

λ1
(
s j
)

:= inf
u∈W\{0}

{
‖u‖p :

∫
Ω

|u|p∣∣x−a j
∣∣p−s j

dx = 1

}
,

with 1 < p < N and s j > 0,1≤ j ≤ k.
Now, we consider the following hypothesis :
(H 1) f is positive function in each neighborhood of ai and satisfies

∫
Ω

f u dx <Cp

(
‖u‖p−

k

∑
i=1

λi

∫
Ω

|u|p

|x−ai|p−si
dx

) p∗−1
p∗−p

for all u ∈W such that
∫

Ω
|u|p

∗
dx = 1 and Cp =

(
p∗−p
p−1

)(
p−1
p∗−1

)(p∗−1)/(p∗−p)
.

(H 2) We consider ε > 0 small enough, δ = (N− p)/p and 1 ≤ l ≤ k such that
∫

Ω
f uε,i

dx = O
(
εθ |ln(ε)|

)
with θ < min(Bl −δ ,δ −Al) and uε,i ∈W.
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Remark 2 If g ∈ Lq (Ω) is a positive function with q = p∗/(p∗−1) and

(∫
Ω

gqdx
) 1

q

<Cp

[
λ ∗−∑

k
i=1 λi

λ ∗ (p∗−1)

] p(p∗−1)
p∗−p

S
p∗−1
p∗−p

then g satisfies (H 1). Moreover, if f (x) = εe|lnε2| g(x) for ε > 0 small enough, then f ∈ Lq (Ω)
satisfies (H 1) and (H 2).

The main result of this paper is the following theorem.

Theorem 1 Assume that µi ≥ 0, λi ≥ 0, si > 0, ∑
k
i=1 µi < µ , ∑

k
i=1 λi < λ ∗ and f satisfies (H 1)

and (H 2). Then the problem (P) has at least 2k solutions in W.

2. PRELIMINARY RESULTS

We give here some results which play important roles in the sequel of this work.
In what follows we denote the norms of Lq (Ω), (1≤ q < ∞) and W−1(the dual of W ) by |u|q

and ‖u‖− respectively. Lp (Ω, |x−ai|s) denotes the usual weighted Lp (Ω) space with the weight
|x−ai|s. C,Ci will denote various positive constants whose exact values are not important. By
Br

a j
we denote the open ball in Ω with center at a j and radius r > 0.
We define for µi ∈ (0,µ) and ai ∈Ω the constant :

Sµi (Ω) := inf
u∈W\{0}

∫
Ω

(
|∇u|p−µi

|u|p

|x−ai|p
)

dx

|u|pp∗
,1≤ i≤ k.

From [5], Sµi is independent of any Ω ⊂ RN in the sense that Sµi (Ω) = Sµi

(
RN) = Sµi . In

addition, the constant Sµi is achieved by a family of functions

Vε,i(x) := ε
(p−N)/pUi

(
x−ai

ε

)
where the positive radial function Ui is defined in [1] and ε > 0. Moreover, the function Vε,i
satisfies :  −∆pVε,i−µi

∣∣Vε,i
∣∣p−1 Vi,ε

|x−ai|p
=
∣∣Vε,i

∣∣p∗−2 Vε,i in RN\{ai}

u−→ 0 as |x| −→ ∞.

Now, we shall give some estimates for the extremal functions Vε,i which we will use later. Let
ϕi ∈C∞

0 (Ω) such that

0≤ ϕi (x)≤ 1,ϕi (x) =
{

0 if |x−ai| ≥ 2r
1 if |x−ai| ≤ r ; and |∇ϕi (x)| ≤C

where δ is a small positive number. Put uε,i = ϕi (x)Vε,i(x) for i in {1, ...,k} .
In what follows, we consider si,λi > 0 and µi ≥ 0 such that ∑

k
i=1 µi < µ and ∑

k
i=1 λi < λ ∗.

By [6], we have the following estimates.
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Lemma 2 Assume that v ∈W is a positive solution of problem (P) and 1 < p < N, then for
ε > 0 small enough and δ = (N− p)/p, we have

∫
Ω

(∣∣∇uε,i
∣∣p− µi

|x−ai|p
∣∣uε,i

∣∣p) dx = SN/p
µi +O

(
ε p(Bi−δ )

)
,∫

Ω

∣∣uε,i
∣∣p∗ dx = SN/p

µi −O
(

ε p∗(Bi−δ )
)
,∫

Ω
|v|
∣∣uε,i

∣∣p∗−1 dx = O
(

ε(δ−Ai)
)
,∫

Ω

∣∣uε,i
∣∣ |v|p∗−1 dx = O

(
ε(p∗−1)(δ−Ai)

)
,

∫
Ω

∣∣∇uε,i
∣∣p−1 |∇v|dx =


O
(

ε(δ−Ai)
)

, Ai +(p−1)Bi > pδ

O
(

ε(δ−Ai) |ln(ε)|
)

, Ai +(p−1)Bi = pδ

O
(

ε(p−1)(Bi−δ )
)

, Ai +(p−1)Bi < pδ

∫
Ω

|∇v|p−1 ∣∣∇uε,i
∣∣dx =


O
(

ε(p−1)(δ−Ai)
)

, Bi +(p−1)Ai > pδ

O
(

ε(Bi−δ ) |ln(ε)|
)

, Bi +(p−1)Ai = pδ

O
(

ε(Bi−δ )
)

, Bi +(p−1)Ai < pδ

∫
Ω

∣∣uε,i
∣∣p−1 |v|

|x−ai|p
dx =


O
(

ε(δ−Ai)
)

, (p−1)Bi +Ai > pδ

O
(

ε(p−1)(Bi−δ ) |ln(ε)|
)

, (p−1)Bi +Ai = pδ

O
(

ε(p−1)(Bi−δ )
)

, (p−1)Bi +Ai < pδ

and

∫
Ω

|v|p−1 ∣∣uε,i
∣∣

|x−ai|p
dx =


O
(

ε(p−1)(δ−Ai)
)

, Bi +(p−1)Ai > pδ

O
(

εBi−δ |ln(ε)|
)

, Bi +(p−1)Ai = pδ

O
(

ε(Bi−δ )
)

, Bi +(p−1)Ai < pδ

Let

I(u) :=
∫

Ω

(
|∇u|p−

k

∑
i=1

µi
|u|p

|x−ai|p
−

k

∑
i=1

λi
|u|p

|x−ai|p−si

)
dx,

S∗ := inf
u∈W\{0}

{
(I(u))1/p ; | |u|p∗ = 1

}
.

From the fact that ∑
k
i=1 λi < λ ∗, we have S∗ > 0.

The energy functional associated to (P) is given by the following expression :

J (u) :=
1
p

I(u)− 1
p∗

∫
Ω

|u|p
∗

dx−
∫

Ω

f udx.

We see that J is well defined in W and belongs to C1 (W,R) .
It is known that a weak solution u ∈W of (P) corresponds to a critical point of J which is

given by :

〈J′ (u) ,ϕ〉=
∫

Ω

(
|∇u|p−2

∇u∇ϕ−∑
k
i=1

µi |u|p−2

|x−ai|p
uϕ−∑

k
i=1

λi |u|p−2

|x−ai|p−si
uϕ

)
dx

−
∫

Ω
|u|p

∗−2 uϕdx−
∫

Ω
f ϕdx = 0, for all ϕ ∈W.
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More standard elliptic regularity argument implies that a weak solution u ∈ W is indeed in
C2(Ω\{a1,a2, ...,ak})∩C1(Ω\{a1,a2, ...,ak}) and we can say that u satisfies (P) in the classi-
cal sense.

Definition 1 A functional J ∈ C1 (W,R) satisfies the Palais–Smale condition at level c, ((PS)c
for short), if any sequence (un)⊂W such that

J (un)−→ c and J′ (un)−→ 0 in W−1 (dual of W),

contains a strongly convergent subsequence.

As J is not bounded below on W , it is useful to consider it on the Nehari manifold :

N =
{

u ∈W\{0} :
〈
J′(u),u

〉
= 0
}
.

It is natural to split N into three subsets :

N +={u ∈N : 〈J′′(u),u〉> 0} ,

N −={u ∈N : 〈J′′(u),u〉< 0} ,

N 0={u ∈N : 〈J′′(u),u〉= 0} ,

with 〈
J′′(u),u

〉
= pI(u)− p∗ |u|p

∗

p∗ −
∫

Ω

f u dx

= (p−1) I(u)− (p∗−1) |u|p
∗

p∗

= (p− p∗) I(u)+(p∗−1)
∫

Ω

f u dx.

Lemma 3 Let f satisfies the condition (H 1). Then for any u ∈W\{0} there exists an unique
t+ = t+ (u)> 0 such that t+u ∈N −and

t+ >

(
(p−1) I(u)

(p∗−1) |u|p
∗

p∗

)(p∗−1)/(p∗−p)

:= tmax (u) = tmax

and J
(
t+u
)
= max

t≥tmax
J (tu) .

Moreover, if
∫
Ω

f u dx > 0, then there exists an unique t− = t− (u)> 0 such that t−u ∈N +,

t− < tmax and J
(
t−u
)
= inf

0≤t≤tmax
J (tu) .

Proof. The lemma is proved in the same way as in [13].

Lemma 4 Let f 6= 0 satisfying the condition (H 1) then N 0=∅.

Proof. Suppose that N 0 6=∅. Then for u ∈N 0 we have :

(p−1) I(u) = (p∗−1) |u|p
∗

p∗ ,

thus

0 = I(u)−|u|p
∗

p∗ −
∫

Ω

f u dx

= (p∗− p) |u|p
∗

p∗ − (p−1)
∫

Ω

f u dx. (3)
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From (H 1) and (2.2) we obtain

0 < Cp (I(u))
(p∗−1)/(p∗−p)−

∫
Ω

f u dx

= (p∗− p) |u|p
∗

p∗

( (p−1) I(u)

(p∗−1) |u|p
∗

p∗

)(p∗−1)/(p∗−p)

−1

= 0,

which yields to a contradiction.
Define, for i ∈ {1, ..,k} ,

βi(u) :=
∫

Ω
ψi(x) |∇u|p dx
|∇u|pp

, where ψi(x) = min{ρ, |x−ai|} and ρ > 0.

Take r0 =
ρ

3 with ρ < 1
4 min

i 6= j

∣∣ai−a j
∣∣ and let

N +
i =

{
u ∈N + : βi(u)≤ r0

}
and N −

i =
{

u ∈N − : βi(u)≤ r0
}
.

Denote
m+

i := inf
u∈N +

i

J (u) and m−i := inf
u∈N −

i

J (u) .

Lemma 5 ([3]) Let ρ > 0 and r0 defined as above. If βi(u)≤ r0 then∫
Ω

|∇u|p dx≥ 3
∫

Ω\Bρ

i

|∇u|p dx.

3. PROOF OF THEOREM 1

From now we consider j fixed in {1, ...,k} .

3.1. Existence of solutions in N +

Using Ekeland’s variational principle we prove the existence of k solutions in N +.

Proposition 6 Let f be a bounded measurable function, locally positive in each neighborhood
of ai and satisfying satisfying (H 1). Then m+

i = inf
v∈N +

i

J (v) is achieved at a point ui ∈ N +
i

which is a critical point and even a local minimum for J.

Proof. We start by showing that J is bounded below in N . Indeed, for u ∈N +, we have

p−1
p∗−1

I(u)> |u|p
∗

p∗ .

The fact that u ∈N we get :

J (u) =
1
p

I(u)− 1
p∗
|u|p

∗

p∗ −
∫

Ω

f u dx

=

(
1
p
− 1

p∗

)
I (u)−

(
1− 1

p∗

)∫
Ω

f u dx

≥
(

1
p
− 1

p∗

)
I (u)−

(
1− 1

p∗

)
‖ f‖− ‖u‖

≥
(

1− p
pp∗

)
(p∗−1)p/(p−1)

(p∗− p)1/(p−1)
‖ f‖p/(p−1)

− .
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In particular

m+
j ≥ m0 ≥

(
1− p
pp∗

)
(p∗−1)p/(p−1)

(p∗− p)1/(p−1)
‖ f‖p/(p−1)

− , for j = 1, ...,k

where m0 = inf
u∈N

J (u) .

We claim that m+
j < 0. In fact, we know that

∫
Bε

j
f uε, j > 0 for all ε small than a certain

ε1 > 0.
Set 0 < t−

ε, j < t−
ε, j,max defined by Lemma 2 such that t−

ε, juε, j ∈ N +. From the fact that

β j

(
t−
ε, juε, j

)
tends to 0 as ε goes to 0, it follows that there exists an ε2 such that β j

(
t−
ε, juε, j

)
≤ r0

for 0 < ε < ε2 < ε1.
Then t−

ε, juε, j ∈N +
j , whence

J
(

t−
ε, juε, j

)
=

(
t−
ε, j

)p

p
I(uε, j)−

(
t−
ε, j

)p∗

p∗
∣∣uε, j

∣∣p∗
p∗ − t−

ε, j

∫
Ω

f uε, j

=

(
1
p
−1
)(

t−
ε, j

)p
I(uε, j)+

(
1− 1

p∗

)(
t−
ε, j

)p∗ ∣∣uε, j
∣∣p∗

p∗

<
(1− p)(p∗− p)

pp∗

(
t−
ε, j

)p
I(uε, j)< 0,

this yields to −∞ < m0 ≤ m+
j < 0.

Ekeland’s variational principle gives us a minimizing sequence
(
u j,n
)

n ⊂N +
j with the fol-

lowing properties :

(i) J
(
u j,n
)
< m+

j + 1
n

(ii) J (w)≥ J
(
u j,n
)
− 1

n

∣∣∇(w−u j,n
)∣∣

p , for all w ∈N +
j .

By taking n large, we have for some ε ∈ (0,ε2) :

J
(
u j,n
)

=

(
1
p
− 1

p∗

)
I(u j,n)−

(
1− 1

p∗

)∫
Ω

f u j,n dx

< m+
j +

1
n
≤ (1− p)(p∗− p)

pp∗

(
t−
ε, j

)p
I(uε, j).

This implies ∫
Ω

f u j,n dx≥ (p−1)(p∗− p)
p(p∗−1)

(
t−
ε, j

)p
I(uε, j)> 0.

Consequently, u j,n 6= 0 and we get

(p−1)(p∗− p)
p(p∗−1)

(
t−
ε, j

)p
I(uε, j)≤

∥∥u j,n
∥∥≤ p∗−1

p(p∗− p)
‖ f‖− .

Thus there exists a subsequence labeled
(
u j,n
)

n such that u j,n ⇀ u j weakly in W, when n goes
to +∞. Using an argument similar to [13] we can conclude that

∥∥J′
(
u j,n
)∥∥
− tends to 0 as n goes

to +∞.
We deduce that 〈

J′
(
u j
)
,ϕ
〉
= 0, for all ϕ ∈W (4)

i.e. u j is a weak solution of (P) .
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In particular u j ∈N , and we have∫
Ω

f u jdx = lim
n−→+∞

∫
Ω

f u j,ndx≥ (p−1)(p∗− p)
p(p∗−1)

(
t−
ε, j

)p
I(uε, j)> 0.

Thus u j 6= 0. Also, from Lemma 4 and (3.1) it follows that necessarily u j ∈N +.

By the fact that β j
(
u j
)
= lim

n−→∞
β j
(
u j,n
)
≤ r0, then u j ∈N +

j . Hence

m+
j ≤ J

(
u j
)
=

(
1
p
− 1

p∗

)
I(u j)−

(
1− 1

p∗

)∫
Ω

f u j dx

≤ lim
n−→∞

infJ
(
u j,n
)
= m+

j .

Hence, similarly to [13], we conclude that u j is a local minimizer for J.
Then u j,n −→ u j strongly in W and J

(
u j
)
= m+

j = inf
v∈N +

j

I (v) . By Lemma 3, we deduce the

existence of k solutions to the problem (P) .

3.2. Existence of solutions in N −

In this subsection, we shall find the range of c where J verifies the (PS)c condition.

Lemma 7 If c < 1
N SN/p

µl where SN/p
µl = min{SN/p

µ1 , ...,SN/p
µk ,SN/p

λ̃ ,µ̃
}, then J satisfies the (PS)c

condition.

Proof. Let (un) be a (PS)c sequence for J with c < 1
N SN/p

µl . We know that (un) is bounded in W ,
and there exist a subsequence of (un) (still denoted by (un)) and u ∈W such that :

un ⇀ u weakly in W,

un ⇀ u weakly in Lp (Ω, |x−ai|−p) for 1≤ i≤ k and in Lp∗ (Ω) ,
un→ u strongly in Lp (Ω, |x−ai|si−p) for 1≤ i≤ k,
un→ u strongly in Lq (Ω) for 1≤ q < p∗.

and ∫
Ω

f un→
∫

Ω

f u.

Using a standard argument, we deduce that u is a weak solution of problem (P) .
By the Concentration-Compactness Principle [11, 12], there exist a subsequence, still deno-

ted by (un), an at most countable set ℑ of different
(
x j
)

j∈ℑ
⊂ Ω\ ∪

{
a j
}

j∈ℑ\{1,...,k}
and sets of nonnegative numbers µ̃x j , ν̃x j for j ∈ ℑ; µ̃ai , γ̃ai , ν̃ai for 1≤ i≤ k such that :

|∇un|p ⇀ dµ̃ ≥ ∑
j∈ℑ

µ̃x j δx j +
k

∑
i=1

µ̃ai δai

|un|p

|x−ai|p
⇀ dγ̃ = γ̃ai δai

and

|un|p
∗
⇀ dν̃ = ∑

j∈ℑ

ν̃x j δx j +
k

∑
i=1

ν̃ai δai

where δx is the Dirac mass at x.
By the Sobolev-Hardy inequalities, we get

µ̃ai −µiγ̃ai ≥ Sµi ν̃
p/p∗
ai , 1≤ i≤ k. (5)
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Claim 1 Either ν̃x j = 0 or ν̃x j ≥ SN/p
0 for any j ∈ ℑ and either ν̃ai = 0 or ν̃ai ≥ SN/p

µi for all
1≤ i≤ k.

Proof of Claim 1. In fact, let ε > 0 be small enough such that ai /∈ Bε
x j

for all 1 ≤ j ≤ k and
Bε

xi
∩Bε

x j
=∅ for i 6= j, and i, j ∈ ℑ.

Let φ
j

ε be a smooth cut-off function centred at x j such that :

0≤ φ
j

ε ≤ 1, φ
j

ε =

{
1 if

∣∣x− x j
∣∣< ε

2 ,
0 if

∣∣x− x j
∣∣> ε,

and
∣∣∣∇φ

j
ε

∣∣∣≤ 4
ε
,

then
lim
ε→0

lim
n→∞

∫
Ω
|∇un|p φ

j
ε = lim

ε→0

∫
Ω
Ω

φ
j

ε dµ̃ ≥ µ̃x j ,

lim
ε→0

lim
n→∞

∫
Ω

|un|p
|x−ai|p

φ
j

ε = lim
ε→0

∫
Ω

φ
j

ε dγ̃ = 0,

lim
ε→0

lim
n→∞

∫
Ω
|un|p

∗
φ

j
ε = lim

ε→0

∫
Ω

φ
j

ε dν̃ = ν̃x j ,

lim
ε→0

lim
n→∞

∫
Ω
|un|p−2

∇un∇φ
j

ε = 0,

thus we have
0 = lim

ε→0
lim
n→∞

〈
J′ (un) ,unφ

j
ε

〉
≥ µ̃x j − ν̃x j .

By the Sobolev-Hardy inequalities, we get

S0ν̃
p/p∗
xi ≤ µ̃x j ,

hence we deduce that
ν̃x j = 0 or ν̃x j ≥ SN/p

0 .

Consider the possibility of concentration at points ai, with 1≤ i≤ k.
For ε > 0 be small enough such that x j /∈ Bε

a j
for all j ∈ ℑ and Bε

ai
∩Bε

a j
= ∅ for i 6= j and

1≤ i, j ≤ k.
Let ψ i

ε be a smooth cut-off function centred at xi such that

0≤ ψ
i
ε ≤ 1, ψ

i
ε =

{
1 if |x− xi|< ε

2 ,
0 if |x− xi|> ε,

and
∣∣∣∇ψ

i
ε

∣∣∣≤ 4
ε
,

then
lim
ε→0

lim
n→∞

∫
Ω
|∇un|p ψ i

ε = lim
ε→0

∫
Ω

ψ i
ε dµ̃ ≥ µ̃ai ,

lim
ε→0

lim
n→∞

∫
Ω
|un|p

∗
ψ i

ε = lim
ε→0

∫
Ω

ψ i
ε dν̃ = ν̃ai ,

lim
ε→0

lim
n→∞

∫
Ω

|un|p
|x−ai|p

ψ i
ε = lim

ε→0

∫
Ω

ψ i
ε dγ̃ = γ̃ai ,

lim
ε→0

lim
n→∞

∫
Ω

|un|p
|x−a j |p

ψ i
ε = 0 for j 6= i,

lim
ε→0

lim
n→∞

∫
Ω
|un|p−2

∇un∇ψ i
ε = 0,

thus we have
0 = lim

ε→0
lim
n→∞

〈
J′ (un) ,unψ

i
ε

〉
≥ µ̃ai −µiγ̃ai − ν̃ai . (6)
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From (3.2) and (3.3) we deduce that

Sµi ν̃
p/p∗
ai ≤ ν̃ai

and then either ν̃ai = 0 or ν̃ai ≥ SN/p
µi for all 1≤ i≤ k.

Consequently, from the above argument and (3.1), we conclude that :

c = lim
n→∞

(
J (un)−

1
2
〈
J′ (un) ,un

〉)
=

1
N

lim
n→∞

∫
Ω

|un|p
∗

=
1
N

(
∑
j∈ℑ

ν̃x j +
k

∑
i=1

ν̃ai

)
.

If ν̃ai = ν̃x j = 0 for all i ∈ {1, ...,k} , j ∈ ℑ, then c = 0 which contradicts the assumption that
c > 0. On the other hand, if there exists an i ∈ {1, ...,k} such that ν̃ai 6= 0 or there exists an j ∈ ℑ

with ν̃x j 6= 0 then we infer that

c≥ 1
N

SN/p
µl = c∗.

Therefore J satisfies the (PS)c condition for c < c∗.

Lemma 8 Under the condition (H 1), (H 2) and 0 < si ≤ s∗i there exists ε0 > 0 such that for
0 < ε < ε0 we have

sup
t>0

I
(
u j + tuε,l

)
< m+

j +
1
N

SN/p
µl .

Proof. Set g(t) := J(u j + tuε,l), then g(0) = J(u j) < m+
j + 1

N SN/p
µl and by the continuity of g

there exists t0 > 0 small enough such that g(t) < m+
j + 1

N SN/p
µl , for all t ∈ (0, t0) . On the other

hand, it is easy to see that g(t)→−∞ as t → +∞, that is, there exists t1 > 0 large enough such

that g(t)< m+
j +

1
N SN/p

µl , for all t ≥ t1. So we only need to show that sup
t0≤t≤t1

g(t)< m+
j +

1
N SN/p

µl .

From the following elementary inequality satisfied for all α,β ∈ R,

|α +β |q−|α|q−|β |q−qαβ

(
|α|q−2 |β |q−2

)
≤C

(
β |α|q−1 +α |β |q−2

)
,

we have

sup
t0≤t≤t1

g(t) = sup
t0≤t≤t1

J(u j + tuε,l)

≤ J(u j)+ sup
t≥0

J(tuε,l)+C1

∫
Ω

(∣∣∇u j
∣∣p−1 ∣∣∇uε,l

∣∣+ ∣∣∇uε,l
∣∣p−1 ∣∣∇u j

∣∣)dx

+C2

k

∑
i=1

µi

∫
Ω

(∣∣u j
∣∣p−1 ∣∣uε,l

∣∣
|x−ai|p

+

∣∣uε,l
∣∣p−1 ∣∣u j

∣∣
|x−ai|p

)
dx

+C3

k

∑
i=1

λi

∫
Ω

(∣∣u j
∣∣p−1 ∣∣uε,l

∣∣
|x−ai|p−αi

+

∣∣uε,l
∣∣p−1 ∣∣u j

∣∣
|x−ai|p−αi

)
dx

+C4

∫
Ω

(∣∣u j
∣∣ ∣∣uε,l

∣∣p∗−1
+
∣∣uε,l

∣∣ ∣∣u j
∣∣p∗−1

)
dx.

ICMA2021-10



Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

By (H 2) we obtain

sup
t0≤t≤t1

J
(
tuε,l

)
= sup

t>0

(
t p

p
I
(
uε,l
)
− t p∗

p∗

∫
Ω

∣∣uε,l
∣∣p∗ dx− t

∫
Ω

f uε,ldx
)

≤ sup
t>0

(
t p

p

∫
Ω

(∣∣∇uε,l
∣∣p− k

∑
i=1

µi

∣∣uε,l
∣∣p

|x−ai|p

)
dx− t p∗

p∗

∫
Ω

∣∣uε,l
∣∣p∗ dx

)
−t1

∫
Ω

f uε,ldx

≤ 1
N

SN/p
µl +O

(
ε

p(Bl−δ )
)
−O

(
ε

θ |ln(ε)|
)
.

From Lemma 1 and the fact that θ < min(Bl −δ ,δ −Al), it follows that

sup
t0≤t≤t1

g(t)< m j +
1
N

SN/p
µl .

Mountain pass lemma gives us a value that is below the threshold m+
j + 1

N SN/2
µl , whose

objective is to compare it with the value m−j = inf
N −

j

I.

Take uε, j ∈W such that
∣∣∇uε, j

∣∣
2 = 1, then by Lemma 2 we can find a unique t+

ε, j
(
uε, j
)
> 0

such that t+
ε, juε, j ∈ N −. We may use an argument similar to the previous subsection to find

t+
ε, juε, j ∈N −

j for ε small enough and I
(

t+
ε, juε, j

)
= max

t≥tε, j,max
I
(
tuε, j

)
. The uniqueness of t+

ε, j

gives that t+
ε, j (u) is a continuous function of u.

Set

U1 =

{
v ∈W such that ‖v‖< t+

(
v
‖v‖

)}
∪{0}

and

U2 =

{
v ∈W such that ‖v‖> t+

(
v
‖v‖

)}
we remark that W\N −

j =U1∪U2 and N +
j ⊂U1. In particular u j ∈U1.

We claim that for t j carefully chosen and ε > 0 small enough û j = u j + t juε, j ∈U2 (using
the same argument as [13]).

Set
£ j =

{
h : [0,1]−→W continuous with h(0) = u j, h(1) = û j

}
.

We have :

Lemma 9 For a suitable choice of tl > 0 and ε > 0,

c∗j = inf
h∈£ j

max
t∈[0,1]

I(h(t))

defines a critical value for I and c∗j ≥ m−j .

Proof. Clearly h : [0,1]−→W given by h(t) = u j + tt juε,l belongs to £ j. Thus

I(h(t))< m+
j +

1
N

SN/p
µl
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and hence
c∗j < m+

j +
1
N

SN/p
µl .

Also, since the range of any h ∈ £ j intersects N −
j we obtain :

c∗j ≥ m−j = inf
N −

j

I.

Lemma 7 results by applying the mountain pass lemma.

Proposition 10 Suppose that f verifies the condition (H 1) and (H 2) then I has a minimizer
u j ∈N −

j such that m−j = I
(
u j
)
. Moreover, u j is a solution of the problem (P).

Proof. There exists a minimizing sequence
(
v j,n
)
⊂N −

j such that I
(
v j,n
)
−→m−j and I′

(
v j,n
)
−→

0 in W.
By Lemma 7, we have m−j < m+

j + 1
N SN/p

µl . Using Lemma 6, we deduce that v j,n converges
strongly to u j in W. Thus u j ∈N −

j and m−j = I
(
u j
)
.

Then I′
(
u j
)
= 0, and so u j is a solution of the problem (P).We conclude that (P) admits

also k solutions in N −.

4. CONCLUSION

Proof of Theorem 1. By Proposition 1 and Proposition 2 we conclude that the problem(P)
admits at least 2k distinct solutions in W.
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