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ABSTRACT

This work presents the study of the impact, to use the standard approach of the Metropolis-
Hasting algorithm and its approach with delayed rejection, on generating computer experiment
designs according to the point stochastic model of Marked Strauss. Finally, an application using
Matlab has been developed to easily compare between the two approaches.
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1. INTRODUCTION

A simulation consists of setting one or more sets of input variables, performing calcula-
tions, and then analysing the results provided by the simulator. Unfortunately, the main difficul-
ties are related to the cost of the calculations from the simulator, and the size of the problem to
tackle. Even after a significant reduction in the size of the problem, it is still impossible for some
applications to opt for a direct use of the simulator. Hence, the idea is to replace the simulator
with one or more approximate functions. These are, generally, simple functions obtained using
approximation or interpolation methods, and through computer experiment designs. Among the
ways used to generate such computer experiment designs are the simulation techniques with
Markov chain (MCMC), and Metropolis-Hastings algorithm (MH).

The idea consists of creating a chain of configurations {X0,X1, · · · ,XN} which converge to
a desired distribution π . In fact, the Metropolis-Hastings algorithm allows such a construction
through a transition nucleus P which is π-reversible. In this context, it is worth mentioning
the works done by Franco J.[1], and Elmossaoui H.et al [2, 3]. There are many sub-categories
of Metropolis-Hastings algorithms [4]. However, the standard Metropolis-Hastings algorithm
generally does not work well with high dimensions since it leads to more frequent repeated
samplings. Hence, so as to overcome this deficiency we can use another variant of the algorithm
called the Metropolis-Hasting algorithm and its approach with delayed rejection (MHRD) which
was proposed by Mira in 1999[5]. The key idea behind the Metropolis-Hasting algorithm and
its approach with delayed rejection is to reduce the correlation between the states of the Markov
chain.

2. SIMULATION OF POINT PROCESSES USING MCMC AND GENERALISED
METROPOLIS-HASTING ALGORITHM

Metropolis-algorithm was introduced by Metropolis and al. in 1953 [6], and generalized
by Hasting in 1970 [4]. It started to be adopted for the case of spacial processes by Geyer and
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Moller way back in 1994 [7]. The basic idea of the algorithm consists of proposing a new state
through a slight perturbation of the current state, and then see whether to accept or reject it.
Generally, the algorithm uses a transition P which is π-reversible and π-invariant, and goes
through two steps as described below :

1. A change of state from x to y according to a distribution Q(x, .) is proposed,

2. State y is accepted with the probability a(x,y), else state x shall be kept (where a :
Ω×Ω→ [0,1] a : Ω×Ω→ [0,1])

Let q(x,y) denote the density of Q(x, .), then the transition P of MH is given as follows [8] :

PMH (x,y) = a(x,y)q(x,y)+

1−
∫
Ω

a(x,z)q(x,z)dz

δx (y) ,

Where δx (.) is the mass at point x. To make calculations simple, we use Dirac measurement
at x(δx (y) = 1 if x = y , and 0 otherwise).

The choice of (Q,a) guarantees the π-reversibility of PMH provided the following equili-
brium equation is satisfied : .

∀x,y ∈Ω : π (x)×q(x,y)×a(x,y) = π (y)×q(y,x)×a(y,x)

The choice of the acceptance probability a is more limited, it is mainly driven by the aim to
simulate (asymptotically) a given distribution π . It is the case with the usual choice where :

a(x,y) =
π (y)×q(y,x)
π (x)×q(x,y)

3. SIMULATION OF POINT PROCESSES USING MCMC METHOD AND
METROPOLIS-HASTING ALGORITHM WITH DELAYED REJECTION

The Metropolis-Hasting algorithm proposes one single candidate at each iteration. The
MH algorithm with delayed rejection [5] is an example of an algorithm which considers many
candidates at each iteration. Thus, a maximal number k of candidates are chosen ; at each itera-
tion, a candidate is proposed either until it is accepted, or until the maximal number is reached.
For example : for k = 2 , the acceptance probability of the first candidate y1 is the same as that
of the generalized MH algorithm; then that of the second candidate y2 is given as follows :

a2 (x,y1,y2) = min
(

π (y2)q1 (y2,y1)q2 (y2,y1,x) [1−a1 (y2,y1)]

π (x)q1 (x,y1)q2 (x,y1,y2) [1−a1 (x,y1)]
,1
)

where q1 and q2 are the instrumental densities of the first and second candidates respectively.

4. . COMPARISON RESULTS

So as to judge the quality of a computer experiment design, it is important to opt for
usual criteria which allow good filling of the space, and a good uniform distribution. The aim of
this section is to calculate the values of these criteria on marked Strauss designs [2], which are
generated using the two versions of Metroplois-Hasting algorithm.

So as to make the results meaningful, the following three types of criteria are then used
— Distance criterion [9],
— Recovery criterion (Coefficient R) [10],
— Discrepancy criterion [11].
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The figures below represent the box-plots obtained as a result of this work using the two
versions of the algorithm; studied and applied for the case of many dimensions. We have opted
for the standard normal distribution as a random variable generating engine for the two versions
as well as for q1 and q2.

FIGURE 1 – Boxplots of distance, discrepancy, and recovery quality criteria calculated on the
basis of 40 designs of 50 points for dimension 5.

A quick analysis of the results shown in the figure above reveals that Metropolis-Hasting
algorithm with delayed rejection offers, in most cases, the best results with regard to the three
criteria involved in this comparison.

5. CONCLUSION

The use of MCMC methods and Metropolis-Hasting algorithm in the context of computer
experiment designs allows to build new specified designs using some distribution. This approach
provides greater flexibility since we can easily manipulate this distribution through its represen-
tation so as to impose some properties such as the filling of the study domain.

Following the comparison done in the course of this work, we have found out that change
proposed by Metropolis-Hasting algorithm with delayed rejection tackles the problem of the
same state being repeated for the chain when the value given by the general algorithm is rejected.
Intuitively, the fact of sticking to the same state most of the times suggests that the algorithm
has failed to explore all of the space, and that the correlation between the values increases.
Moreover, information on the value rejected in the regular Metropolis-Hasting algorithm cannot
be used subsequently for the sake of preserving Markov chain properties. On the other hand,
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since acceptance probabilities at each state should be (separately) adjusted in Metropolis-Hasting
algorithm with delayed rejection in order to preserve the reversibility property of the chain,
the algorithm, then, allows to use the information acquired through rejections within the same
iteration ; hence offering the possibility of a local adjustment of the instrumental distribution.
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