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ABSTRACT

The present work aims to investigate a penny-shaped crack problem in the interior of a homo-
geneous elastic material under an axisymmetric torsion by a circular rigid inclusion embedded
in the elastic medium. With the use of the Hankel integral transformation method, the mixed
boundary value problem is reduced to a system of dual integral equations. The latter is converted
into a regular system of Fredholm integral equations of the second kind which is then solved
by quadrature rule. Numerical results for the displacement, stress and stress intensity factor are
presented graphically in some particular cases of the problem.

1. INTRODUCTION

The problems’ category which examines the state of stresses and displacements in an elastic
layer medium, due to a torsion of a circular inclusion in bonded contact, has been a subject of
much interest in in geotechnical engineering, civil engineering and applied mechanics. It may
give a better understanding of the behavior of foundations under external loads. In structure-
medium interaction problems arising in foundation engineering, the foundation is usually mo-
deled using a rigid or flexible inclusion having circular, strip, rectangular or arbitrary shape.
Generally, an inclusion in contact with an elastic medium can be excited by normal translation,
lateral translation, rocking rotation and torsional rotation. From a practical viewpoint, in geome-
chanical applications, the inclusion may represent the resinous or cementing material, which is
used to transfer the anchoring loads to the geological medium.[1]. In this category of problem the
penny-shaped crack can be caused by thermally induced stresses in the dilatation of the inclusion
or the hydraulic fracture.

It has been shown that for foundations in which the depth of embedment exceeds the dimen-
sion of the foundation by ten times, the medium can be considered as infinite elastic space[2].
For the case of infinite embedment of the rigid disc in an infinite elastic solid (deeply embedded),
Selvadurai [3, 4] investigated the asymmetric contact problems related to a rigid circular inclu-
sion disc embedded in bonded contact with an isotropic elastic medium. Their results depend on
the rotational or translational stiffnesses for the embedded rigid circular disc .

The problem on the torsion of an elastic half space was considered, at first, by Reissner and
Sagoci [5]. They studied the static interaction of a rigid disc and an elastic isotropic half-space
for which they obtained the solution by means of the spheroidal coordinates. Sneddon [6, 7]
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re-studied the classical Reissner-Sagoci problem by a different method using the Hankel trans-
forms method for reduction the problem to a pair of dual integral equations. Ufliand [8] set up
the dual integral equations for the Reissner-Sagoci problem for a circular disc on an elastic layer
and reduced them to the solution of a Fredholm integral equation of the second kind. Collins
[9] treated the torsional problem of an elastic half-space by supposing the displacement at any
point in the half-space to be due to a distribution of wave sources over the part of the free surface
in contact with the disc. The solution of the forced vibration problem of elastic layer of finite
thickness when the lower face is either stress free or rigidly clamped was given by Gladwell
[10] who reduced the mixed boundary value problem to a Fredholm integral equation by Noble’s
method [11]. Singh and Dhaliwal [12] investigated the Reissner-Sagoci problem for an elastic
layer under torsion by a pair of a circular discs on opposite faces. Reissner-Sagoci problem was
solved by Selvadurai [13] for a problem related to the axisymmetric rotation of a rigid circular
punch which is bonded to the surface of a transversely isotropic elastic halfspace region. Pak
and Saphores [14] provided an analytical formulation for the general torsional problem of a ri-
gid disc embedded in an isotropic half-space. The quadrature numerical was used for solving
the obtained Fredholm integral equation. Besides, Bacci and Bennati [15] employed the Hankel
transforms method and the power series method with the truncation of the second term to consi-
der the torsional of circular rigid disc adhered to the upper surface of an elastic layer fixed to an
undeformable support.

More recently, Singh et al.[16] studied the static torsional loading of a non-homogeneous,
isotropic, half-space by rotating a circular part of its boundary surface. The solution of the cor-
responding triple integral equations was reduced to the solution of two simultaneous integral
equations. Cai and Zue [17] discussed the torsional vibration of a rigid disc bonded to a poro-
elastic multilayered medium. They used the Hankel transforms and transferring matrix method.
Rahimian[18] et al studied the problem of torsion in a transversely isotropic half-space by a rigid
circular disc. Using cylindrical co-ordinate system and applying Hankel integral transform in the
radial direction, the problem may be changed to a system of dual integral equations. Yu [19] stu-
died the forced torsional oscillations inside the multilayered solid. The elastodynamic Green’s
function of the center of rotation and a point load method were used to solve the problem. Pal
and Mandal [20] considered the forced torsional oscillations of a transversely isotropic elastic
half space under the action of an inside rigid disc. The studied problem was transformed to dual
integral equations system. Which was reduced to a fredholm integral equation. A similar pro-
blem with the rocking rotation was solved later on by Ahmadi and Eskandari [21]. They used an
appropiate Green’s function to write the mixed boundary-value problem posed as a dual integral
equation.

The torsional problem of elastic layers with a penny shaped crack was considered by some
researchers. Sih and Chen [22] studied the problem of a penny-shaped crack in layered compo-
site under a uniform torsional stress. The displacement and stress fields throughout the composite
were obtained by solving a standard Fredholm integral equation of the second kind. Low [23]
investigated a problem of the effects of embedded flaws in the form of an inclusion or a crack
in an elastic half space subjected to torsional deformations. The corresponding Fredholm inte-
gral equations were solved numerically by quadrature approach. The same method was used by
Dhawan [24] for solving the problem of a rigid disc attached to an elastic half-space with an in-
ternal crack. By using Hankel and Laplace transforms and taking numerical inversion of Laplace
transform, Basu and Mandal [25] treated the torsional load on a penny-shaped crack in an elastic
layer sandwiched between two elastic half-spaces.

In this paper, we investigate the problem of a penny-shaped crack in the interior of an ho-
mogeneous elastic medium under an axisymmetric torsion applied to a rigid disc glued inside.
With the aid of the Hankel integral transformation method. The mixed boundary-value problem
is written as a system dual of integral equations. The corresponding system of Fredholm integral
equations was approached by sets of linear equations. After getting the unknown coefficients of
this system we obtain numerical results and display curves according to certain pertinent para-
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meters.

2. FORMULATION OF THE PROBLEM

We consider the axisymmetric torsion of a circular rigid inclusion of a radius b situated on
plane z= h in an infinite, isotropic and homogeneous elastic medium, containing a penny-shaped
crack in the region 0 < r < a, z = 0. The faces of the crack are supposed stress free while the
rigid circular disc inclusion rotates with an angle ω about the z axis passing through their centers
as shown in Fig.1.

FIGURE 1 – Geometry and coordinate system

As the geometry studied is axisymmetric in the geometry and the loading (radially symme-
tric) where the angular displacement uθ depend only on the r and z then the radial and axial
displacement components are zero, that is ur = uz = 0.

Then the only non-zero components stresses are related to the displacement component by

τθz = G
∂uθ

∂ z
, τθr = Gr

∂

∂ r

(uθ

r

)
(1)

where G is the shear modulus of the material.
For the static axisymmetric torsion of a homogeneous isotropic material and linear elastic

behaviour, the displacement satisfies the following differential equation

∂ 2uθ

∂ r2 +
∂uθ

r∂ r
− uθ

r2 +
∂ 2uθ

∂ z2 = 0 (2)

By means of the Hankel’s transformation integral and its inverse given by [26]

F(λ ,z) =
∫

∞

0
f (r,z)rJ1(λ r)dr (3)
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and
f (r,z) =

∫
∞

0
F(λ ,z)λJ1(λ r)dλ (4)

where J1 is the Bessel function of the first kind of order one. The general solution of Eq.(1) for
the regions I(z≤ 0), II(0≤ z≤ h) and III(z≥ h) as shown in Fig.1 is expressed as

u(i)
θ
(r,z) =

∫
∞

0
[Ai(λ )e−λ z +Bi(λ )eλ z]J1(λ r)dλ

i = 1,2,3 (5)

where Ai and Bi are unknown functions.

3. BOUNDARY AND CONTINUITY CONDITIONS

Let us assume the contact between the rigid circular inclusion and the elastic layer is per-
fectly bonded all along their common interface. We consider the regularity conditions at infinity,
the boundary and continuity conditions at z = h, as shown in the following

At infinity, the regularity conditions are given by

lim
|z|→∞

uθ (r,z) = 0, lim
|z|→∞

τθz(r,z) = 0 (6)

The boundary conditions of the problem are

τ
(2)
θz (r,0

+) = τ
(1)
θz (r,0

−) = 0 r < a (7a)

u(3)
θ

(r,h) = u(2)
θ

(r,h) = ωr r ≤ b (7b)

The continuity conditions of the problem in the planes z = 0 and z = h can be written as

u(2)
θ

(r,0+)−u(1)
θ

(r,0−) = 0 r ≥ a (8a)

τ
(2)
θz (r,0

+)− τ
(1)
θz (r,0

−) = 0 r ≥ a (8b)

u(3)
θ

(r,h+)−u(2)
θ

(r,h−) = 0 r > b (8c)

τ
(3)
θz (r,h

+)− τ
(2)
θz (r,h

−) = 0 r > b (8d)

By utilizing the condition Eq.(6), the expressions of displacements and stresses in the three
regions take the following forms

u(1)
θ

(r,z) =
∫

∞

0
B1(λ )eλ zJ1(λ r)dλ (9a)

τ
(1)
θz (r,z) = G

∫
∞

0
λB1(λ )eλ zJ1(λ r)dλ (9b)

u(2)
θ

(r,z) =
∫

∞

0

[
A2(λ )e−λ z +B2(λ )eλ z

]
J1(λ r)dλ (9c)

τ
(2)
θz (r,z) = G

∫
∞

0
λ

[
−A2(λ )e−λ z +B2(λ )eλ z

]
J1(λ r)dλ (9d)

u(3)
θ

(r,z) =
∫

∞

0
A3(λ )e−λ zJ1(λ r)dλ (9e)

τ
(3)
θz (r,z) =−G

∫
∞

0
λA3(λ )e−λ zJ1(λ r)dλ (9f)
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The unknown functions B1(λ ), A2(λ ), B2(λ ) and A3(λ ) can be determined from the boun-
dary and continuity conditions.

The boundary and continuity conditions Eqs. (7a), (8b), (7b) and (8c) show that

τ
(2)
θz (r,0

+)− τ
(1)
θz (r,0

−) = 0 r ≥ 0 (10a)

u(3)
θ

(r,h+)−u(2)
θ

(r,h−) = 0 r ≥ 0 (10b)

The continuity conditions Eqs.(8b) and (8c) lead to

B1(λ ) = B2(λ )−A2(λ ) (11a)

A3(λ ) = B2(λ )e2λh +A2(λ ) (11b)

From the mixed boundary conditions Eqs.(7a), (8a), (7b) and (8d), we find the system of
dual integral equations for obtained the unknown functions A2 and B2∫

∞

0
λ [B2(λ )−A2(λ )]J1(λ r)dλ = 0, r < a (12a)∫

∞

0
A2(λ )J1(λ r)dλ = 0, r ≥ a (12b)∫

∞

0
[A2(λ )e−λh +B2(λ )eλh]J1(λ r)dλ = ωr, r ≤ b (12c)∫

∞

0
λB2(λ )eλhJ1(λ r)dλ = 0, r > b (12d)

3.1. Limiting Cases

By taking the limit a→∞ , the problem is simplified to the torsional rotation of a rigid cirular
inclusion in a homogeneous elastic half-space, the dual integral equations become :∫

∞

0
[A2(λ )e−λh +B2(λ )eλh]J1(λ r)dλ = ωr, r ≤ b (13a)∫

∞

0
λB2(λ )eλhJ1(λ r)dλ = 0, r > b (13b)

This pair of dual integral equations has the same meaning as (18a) and (18b) in Pak’s paper
[14].

Let’s take the limit a→ 0, one can obtain the closed-form solution pertinent to the torsional
rotation of a rigid disc embedded in a homogeneous elastic full-space. Due to the symmetry of
the full-space case with respect to the plane of the disc, it can be deduced that τθ z is zero for
r > a at the disc plane. This situation corresponds exactly to the torsion of a homogeneous elastic
half-space by a circular rigid disc (0 < r < a,z = 0) bonded to the surface. This is adapted to the
problem concerning isotropic half-space considered by Reissner and Sagoci [5].

4. REDUCTION OF THE PROBLEM TO A SYSTEM OF FREDHOLM INTEGRAL
EQUATIONS

The system of dual equations can be reduced to a system of Fredholm integral equations of
second kind by introducing the auxiliary functions φ(t) and ψ(t) such that

A2(λ ) =
√

λ

∫ a

0

√
tφ(t)J 3

2
(λ t)dt (14a)

B2(λ ) = e−λh
√

λ

∫ b

0

√
tψ(t)J 1

2
(λ t)dt (14b)
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With this choice of the new unknown functions, we find that the homogeneous equations
Eq.(12b) and Eq.(12d) are identically satisfied while equations Eq.(12a) and Eq.(12c) lead to the
Fredholm’s integral equations.

By inserting A2(λ ) and B2(λ ) in the equations Eq.(12a) and Eq.(12c), we get

∫ a

0

√
tφ(t)dt

∫
∞

0
λ

3
2 J 3

2
(λ t)J1(λ r)dλ −

∫ b

0

√
tψ(t)dt∫

∞

0
λ

3
2 e−λhJ 1

2
(λ t)J1(λ r)dλ = 0, r < a (15)

∫ a

0

√
tφ(t)dt

∫
∞

0

√
λe−λhJ 3

2
(λ t)J1(λ r)dλ +

∫ b

0

√
tψ(t)dt∫
∞

0

√
λJ 1

2
(λ t)J1(λ r)dλ = ωr, r < b (16)

To find the first Fredholm integral equation, we use λJ1(λ r) =
1
r2

d
dr

[r2J2(λ r)].
Taking into account the integral formula

∫
∞

0

√
λJ 3

2
(λ t)J2(λ r)dλ =


√

2
π

t
3
2

r2
√

r2− t2
t < r

0 t > r

we obtain Abel equation corresponding to equation Eq.(15)√
2
π

∫ r

0

t2φ(t)√
r2− t2

dt− r2
∫ b

0

√
tψ(t)dt ∫

∞

0

√
λe−λhJ 1

2
(λ t)J2(λ r)dλ = 0, r < a (17)

By applying the Abel’s transform formula∫ r

0

f (t)√
r2− t2

dt = g(r) then f (t) =
2
π

d
dt

∫ t

0

rg(r)√
t2− r2

dr

we then find from Eq.(??) that

t2
φ(t) =

√
2
π

d
dt

∫ t

0

r3
√

t2− r2

[∫ b

0

√
δψ(δ )dδ∫

∞

0

√
λe−λhJ 1

2
(λδ )J2(λ r)dλdr, r < a (18)

For the right hand side of the above equation, the integral is further simplified by using the
following relationship √

2
π

d
dt

∫ t

0

r3
√

t2− r2
J2(λ r)dr =

√
λ t

5
2 J 3

2
(λ t)

we obtain the first Fredholm integral equation of second kind

φ(t)+
√

t
∫ b

0

√
δψ(δ )K(t,δ )dδ = 0, r < a (19)
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where
K(t,δ ) =−

∫
∞

0
λe−λhJ 3

2
(λ t)J 1

2
(λδ )dλ

Similarly, Eq.(??) can be reduced to the second Fredholm integral equation as follows
By using the formula

∫
∞

0

√
λJ 1

2
(λ t)J1(λ r)dλ =


√

2t
π

1

r
√

r2− t2
t < r

0 t > r

we obtain the following Abel equation

1
r

√
2
π

∫ r

0

tψ(t)√
r2− t2

dt+
∫ a

0

√
tφ(t)dt ∫

∞

0

√
λe−λhJ 3

2
(λ t)J1(λ r)dλ = ωr, r < b (20)

By applying the Abel’s transform formula to the last equation, we obtain

tψ(t) =

√
2
π

d
dt

∫ t

0

r2
√

t2− r2

[
ωr−

∫ a

0

√
δφ(δ )dδ∫

∞

0

√
λe−λhJ 3

2
(λδ )J1(λ r)dλdr, r < b (21)

Using the following relationship

d
dt

∫ t

0

r3
√

t2− r2
dr = 2t2

√
2
π

d
dt

∫ t

0

r2J1(λ r)√
t2− r2

dr = t
√

λ tJ 1
2
(λ t)

we finally get the second Fredholm integral equation of second kind

ψ(t)+
√

t
∫ a

0

√
δφ(δ )L(t,δ )dδ =

4ω√
2π

t, t < b (22)

with the kernel
L(t,δ ) =

∫
∞

0
λe−λhJ 1

2
(λ t)J 3

2
(λδ )dλ

The system given by Eq.(
By putting {

δ = aη , 0 < δ < a; t = aξ 0 < t < a

δ = bη , 0 < δ < b; t = bξ 0 < t < b
(23)

Next, we multiply the above two equations of the system, respectively by

√
2π

4aω
φ(au) and

√
2π

4bω
ψ(bu) and using the following substitutions

Φ(u) =

√
2π

4aω
φ(au) Ψ(u) =

√
2π

4bω
ψ(bu)

c =
b
a

λ =
x
a

H =
h
a

ρ =
r
a

ζ =
z
a

(24)

ICMA2021-7



Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

we obtain

Φ(ξ )+ c2√c
√

ξ

∫ 1

0

√
ηΨ(s)K(ξ ,η)dη = 0, ξ < 1 (25)

Ψ(ξ )+
1√
c

√
ξ

∫ 1

0

√
ηΦ(η)L(ξ ,η)dη = ξ , ξ < 1 (26)

where

K(ξ ,η) =−
∫

∞

0
xe−xHJ 3

2
(xξ )J 1

2
(xcη)dx

=− 2
π

1√
cξ η

∫
∞

0
e−xHsin(xcη)[

sin(xξ )

xξ
− cos(xξ )]dx

L(ξ ,η) =
∫

∞

0
xe−xHJ 1

2
(xcξ )J 3

2
(xη)dx

=
2
π

1√
cξ η

∫
∞

0
e−xHsin(xcξ )[

sin(xη)

xη
− cos(xη)]dx

The indefinite integrals K and L can be evaluated in closed form given in (3 :947 :1-2), (3 :948 :2)
and (3 :893 :1-2) from [27], we obtain

K(ξ ,η) =− 1

π
√

ξ cη
[

1
2ξ

log
H2 +(cη +ξ )2

H2 +(cη−ξ )2−

(
cη +ξ

H2 +(cη +ξ )2 +
cη−ξ

H2 +(cη +ξ )2 )] (27a)

L(ξ ,η) =
1

π
√

ηcξ
[

1
2η

log
H2 +(cξ +η)2

H2 +(cξ −η)2−

(
cξ +η

H2 +(cξ +η)2 +
cξ −η

H2 +(cξ +η)2 )] (27b)

5. NUMERICAL RESULTS AND DISCUSSION

As the kernels K and L are continuous on the interval [0,1], the system of Fredholm integral
equations can be solved by direct or iterative techniques[28]. The midpoint quadrature [29] is
used to find the numerical solution for the system given by Eq.(25) and Eq.(26). Dividing the

interval [0,1] into N equal sub-intervals, so the midpoints are u = um =
2m−1

2N
s = un =

2n−1
2N

m,n = 1,2...,N
and introducing the following notations

Φ(um) = Φm Ψ(um) = Ψm (28a)
K(um,un) = Kmn L(um,un) = Lmn (28b)

we obtain the following systems of finite algebraic equations

Φm +
c2√c

N
√

um

N

∑
n=1

√
unΨnKmn = 0, m = 1,2, ...,N (29)

Ψm +
1

N
√

c
√

um

N

∑
n=1

√
unΦnLmn = um, m = 1,2, ...,N (30)
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After solving the above system, the unknown coeffcients can be obtained then we ge the nu-
merical approximation of the unknown functions B1, A2, B2 and A3 given by Eq.(11a), Eq.(14a),
Eq.(14b) and Eq.(11b)

B1(x) =
4a2ω

N
√

2π

√
x

N

∑
m=1

√
um[e−xHc2√c

ΨmJ 1
2
(xcum)−ΦmJ 3

2
(xum)] (31a)

A2(x) =
4a2ω

N
√

2π

√
x

N

∑
m=1

√
umΦmJ 3

2
(xum) (31b)

B2(x) = e−xH 4b2√cω

N
√

2π

√
x

N

∑
m=1

√
umΨmJ 1

2
(xcum) (31c)

A3(x) =
4a2ω

N
√

2π

√
x

N

∑
m=1

√
um[exHc2√c

ΨmJ 1
2
(xcum)+ΦmJ 3

2
(xum)] (31d)

5.1. Stress intensity factor

The stress intensity factor at the edge of the crack and at the rim of the disc are defined
respectively by

Ka
III = lim

r→a+

√
2π(r−a)τ(2)

θz (r,z)|z=0 (32)

Kb
III = lim

r→b−

√
2π(b− r)τ(2)

θz (r,z)|z=h (33)

On the plane z = 0 for r ≥ a, the expression of stress is given by

τ
(2)
θz (r,0) = G

∫
∞

0
[−λ

3
2

∫ a

0

√
tφ(t)J 3

2
(λ t)dt+

e−λh
λ

3
2

∫ b

0

√
tψ(t)J 1

2
(λ t)dt]J1(λ r)dλ (34)

On the plane z = h, the expression of stress is given by

τ
(2)
θz (r,h) = G

∫
∞

0
[−e−λh

λ
3
2

∫ a

0

√
tφ(t)J 3

2
(λ t)dt+

λ
3
2

∫ b

0

√
tψ(t)J 1

2
(λ t)dt]J1(λ r)dλ (35)

The second and the first part of the integrals 34 and 35 respectively converge quickly, their
limits as r→ a and r→ b automatically vanishe, although, the limits of the other two integrals
analyzed asymptotically as follows

Using the relation

J1(λ r) =− 1
λ

d
dr

J0(λ r)
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we obtain

τ
(2)
θz (r,0) = G

∫ a

0

√
tφ(t)dt

∫
∞

0
F(λ ,r)dλ+

G
∫ b

0

√
tψ(t)dt

∫
∞

0
e−λh

λ
3
2 J 1

2
(λ t)J1(λ r)dλ (36)

and

τ
(2)
θz (r,h) =−G

∫ a

0

√
tφ(t)dt

∫
∞

0
e−λh

λ
3
2 J 3

2
(λ t)J1(λ r)dλ−

G
∫ b

0

√
tψ(t)dt

∫
∞

0
G(λ )dλ (37)

where
F(λ ,r) = λ

1
2 J 3

2
(λ t)J0(λ r)

G(λ ,r) = λ
1
2 J 1

2
(λ t)J0(λ r)

We use the following asymptotic behavior of the Bessel function of the first kind, for large values
of λ

Jν (λ )'
√

2
λπ

cos(λ − π

2
ν− π

4
)

then we get,

J3/2(λ t)'
√

2
λ tπ

cos(λ t−π) =−
√

2
λ tπ

cos(λ t)

J1/2(λ t)'
√

2
λ tπ

cos(λ t− π

2
) =

√
2

λ tπ
sin(λ t)

To calculate the limit of the integral

lim
r→a+

2π
√

(r−a)
∫

∞

0
F(λ ,r)dλ (38)

lim
r→b−

2π
√
(b− r)

∫
∞

0
G(λ ,r)dλ (39)

we use the asymptotic functions F
′

and G
′
, we obtain∫

∞

0
F(λ ,r) =

∫
∞

0

[
F(λ ,r)−F

′
(λ ,r)

]
dλ +

∫
∞

0
F
′
(λ ,r)dλ (40)

∫
∞

0
G(λ ,r) =

∫
∞

0

[
G(λ ,r)−G

′
(λ ,r)

]
dλ +

∫
∞

0
G
′
(λ ,r)dλ (41)

From the uniform convergence of the integral we find that

lim
r→a+

2π
√
(r−a)

∫
∞

0

[
F(λ ,r)−F

′
(λ ,r)

]
dλ = 0 (42)

lim
r→b−

2π
√

(b− r)
∫

∞

0

[
G(λ ,r)−G

′
(λ ,r)

]
dλ = 0 (43)
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Next, we use the following integral formulas to replace the first infinite integral respectively
in the right part of Eq.(36) and Eq.(37)

∫
∞

0
cos(λ t)J0(λ r)dλ =


1√

r2− t2
r > t

0 r < t

∫
∞

0
sin(λ t)J0(λ r)dλ =


0 r > t

1√
t2− r2

r < t

we obtain

τ
(2)
θz (r,0) =−

√
2
π

G
d
dr

∫ a

0

φ(t)√
r2− t2

dt +R1(r) (44)

τ
(2)
θz (r,h) =−

√
2
π

G
d
dr

∫ b

0

ψ(t)√
t2− r2

dt +R2(r) (45)

where

R1(r) = G
∫ b

0

√
tψ(t)dt

∫
∞

0
e−λh

λ
3
2 J 1

2
(λ t)J1(λ r)dλ

R2(r) =−G
∫ a

0

√
tφ(t)dt

∫
∞

0
e−λh

λ
3
2 J 3

2
(λ t)J1(λ r)dλ

Now integrating by parts, we get

τ
(2)
θz (r,0) = G

√
2
π
[

aφ(a)

r
√

r2−a2
− ∫ a

0

tφ ′(t)

r
√

r2− t2
dt]+R1(r) (46)

We note that the infinite integrals in the preceding expressions are convergent throughout the
medium except at the singular points r→ a+ which occupy the crack boundary.

τ
(2)
θz (r,h) = G

√
2
π
[

bψ(b)

r
√

b2− r2
− ∫ b

r

1
r

tψ ′(t)√
t2− r2

dt]+R2(r) (47)

In this case, the equation 47 shows that τ
(2)
θz (r,h) is 0(r) as r→ 0 and the integral is bonded

as r→ b−. As a result we obtain a square root singularity at r = b and the constant ψ(b) is the
measure of the strength of singularity at the vicinity of the rigid inclusion.

The stress intensity factor at the edge of the rigid inclusion may be calculated as

Kb
III = lim

r→b−

√
2π(b− r)

G
√

2√
π

bψ(b)

r
√

b2− r2
(48)

ICMA2021-11



Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

By using the following transformations

φ(a) =
4aω√

2π
ΦN , ψ(a) =

4bω√
2π

ΨN

we obtain

Ka
III =

4Gω
√

a√
π

ΦN (49)

Kb
III =

4Gω
√

b√
π

ΨN (50)

Fig.2 shows the results of the effect of the normalized crack size a/b on the stress intensity
factor Ka

III for different disc locations H = 1,0.75,0.5 and 0.25. It is observed that the values of
the stress intensity factor versus a/b increase, attain its maximum values and then decrease to
zero.

The effect of the distance between the crack and the rigid inclusion H on the stress intensity
factor is also shown in Fig.2. The increase of the height H induces the decrease of stress intensity
factor for all values of a/b.

Fig.3 illustrates the variation of the normalized stress intensity factor Kb
III at the edge of the

rigid inclusion defined by Eq.(50) versus a/b for H = 1,0.75,0.5 and 0.25. It can be seen that
the stress intensity factor starts with the value 4/

√
π which is The stress intensity factor of at

the vinicity of the rigid inclusion (a0) for a rigid disc alone in the infinite medium(not cracked).
. Furthermore, it first increases and then decreases to a minimum value and finally increases to
4/
√

π . In addition, the interaction between the inclusion and the crack is small for smaller values
of a/b and the values of the stress intensity factor are greater when the crack is closer to the disc.

5.2. Displacement and stress fields

By substituting the Eqs.(31a)-(31d) into the expressions of the displacements and the stresses
Eqs.(9a )-(9f), we get the numerical results of displacements and stresses for the three regions.

The results for the variation of the normalized displacements u(i)
θ
(ρ,ζ )/ωa and the norma-

lized stresses τ(i)(ρ,ζ )/ Gωa versus the normalized radius ρ are shown graphically in Fig.4 to
Fig.9 for the different values of the dimensionless axial distances ζ = z/a. For each region, five
different axial distances are selected as I(ζ =−H ; −3H/4 ; −H/2 ; −H/4 ; 0), II(ζ = 0 ; H/4 ;
H/2 ; 3H/4 ;H), III(ζ = H ; 5H/4 ; 3H/2 7H/4 ;2H), with the particular values of the height
H = 1 and the dimensionless disc sizes c = 1 and c = 0.5.

The variation of the normalized displacements are shown in Fig.4 to Fig.6. We notice that
the displacements in the three regions increase at first, reach maximum values at ρ = c in region
2 and 3 and then decrease out of the disc band with increasing ρ .

The distribution of the shear stresses in the elastic medium are also discussed and shown in
Fig.7 to Fig.9. It is concluded that the magnitude of the stress in the first region is the lowest for
the three others and that the stress are initially rises, attains its maximum values and with the
increase in the value of ρ the stress go on decreasing.

6. CONCLUSION

In this study, the axisymmetric torsion problem of a circular rigid inclusion embedded in the
interior of an homogeneous elastic material is analytically addressed. The medium is weakened
by a penny-shaped crack located parallel to the plane of the inclusion. Using the Hankel integral
transformation method, the doubly mixed boundary value problem is reduced to a system of
dual integral equations, which are transformed, to a Fredholm integral equations system of the
second kind. The presented graphs show the variation of the displacements, the stresses in the
three regions and the stress intensity factor at the edge of the crack and at the rim of the inclusion
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for some dimensionless parameters. The numerical results show that the discontinuities around
the crack and the inclusion cause a large increase in the stresses which decay with distance from
the disc-loaded. Furthermore, it can be seen the dependence of the stress intensity factor on the
disc size and the distance between the crack and the rigid inclusion.
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