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ABSTRACT
In this research, we investigate the mean square convergence of numerical solutions of the ran-
dom fractional differential equations using Euler approximation method. The analysis is achieved
with the help of the mean square calculus.

1. INTRODUCTION

Fractional differential equations have become a center of interest by many researchers due
to their frequent use in different domains. We recommend to the reader [3, 4, 6, 10, 12], and the
references therein.
To obtain the analytic solutions of fractional differential equations in some cases is become
difficult so establishing approximate mathematical methods for fractional differential equations
is important and helpful. There are numerous numerical techniques dedicated towards studying
numerical solution for fractional differential equations, such as the Adams predictor-corrector
type [1, 2, 11].
As it is known that the parameters of a dynamic system are described as statistics, that is, the
information is probabilistic, the common approach in mathematical modeling of such systems is
the use of random differential equations or stochastic differential equations. Random fractional
differential equations appear in a variety of applications and have been studied by a number of
mathematicians [7, 8].
In this study, we are concerned to the following random fractional differential equations with
initial conditions : 

DαU(t) = f (t,U(t)),
U(0) = U0,

U
′
(0) = U1,

(1)

where, α ∈ (1,2], U(·) is a random function of order two (... stochastic process) , U0,U1 are
some random variables of order two, f : J×L2(Ω)→ R, (with J = [0,T ]), is given function.
The rest of the article is structured as follow. In section 2, some definitions and lemmas that we
need in our study. The construction of the fractional Euler method in section 3, The error analysis
for the fractional Euler method are presented in Section 4. And the conclusion is presented in the
last section.

2. PRELIMINARIES

Let us start by recalling the following definitions, lemmas and notions [9].
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We consider C = C
(
J,L2(Ω)

)
the given class of : mean square continuous process of order

two, such that ∫
J

E
(
X2(t)

)
dt < ∞.

The norm is :
‖X‖C = sup

t∈J
‖X(t)‖2 = sup

t∈J

√
E
(
X2(t)

)
.

Definition 1 The α ∈ (n−1,n]− mean square derivative of Caputo for X is :

Dα X(t) = In−α dn

dt
X(t),

where, dn

dt X(t) denotes the mean square differentiation and X(t) is assumed to be mean square
differentiable.

Definition 2 Let us take α ∈ (n− 1,n], where n ∈ N∗ and X ∈ C . The mean square integral
Iα X(t) is :

Iα X(t) =
1

Γ(α)

∫ t

0
(t− s)α−1X(s)ds.

Lemma 1 Let X(t)∈C . For q > 0, the general solution of the differential equation DqX(t) = 0,
is given by

X(t) =C0 +C1t−+ · · ·+Cn−1tn−1,

where, Ci ∈ R, i = 1, . . . ,n−1,n = [q]+1.

Lemma 2 Let X(t) ∈ C . Let q > 0, so,

IqDqX(t) = X(t)+C0 +C1t + · · ·+Cn−1tn−1,

where, Ci ∈ R, i = 1, . . . ,n−1,n = [q]+1.

3. MAIN RESULTS

In the following lemma we present the random integral solution of the problem (1)

Lemma 3 The random integral solution of the problem (1) is defined by

U(t) =U0 +U1t +
∫ t

0

(t− s)α−1

Γ(α)
f (s,U(s))ds,

(2)

Proof. Applying mean square integral for α ∈]1,2] to (1)

Iα DαU(t) = Iα f (t,U(t)),

we use the Lemma 2 we get

U(t) =U(0)+U
′
(0)t + Iα f (t,U(t)),

using the initial conditions in (1) we get the solution.
Now, we pass to present the numerical approximations to the random solution of the problem

ICMA2021-2



Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

(1). We define 0 = t0 < t1 < · · · < tN = T, and tk = t0 + kh, where h = T/N,N ∈ N∗. Then, an
approximation to the integral solution at tk,(0≤ k≤N) can be attained by the following formula

U(tk) =U0 +U1tk +
∫ tk

0

(tk− s)α−1

Γ(α)
f (s,U(s))ds,

=U0 +U1tk +
1

Γ(α)

k−1

∑
i=0

∫ ti+1

ti
(tk− s)α−1 f (s,U(s))ds, tk ∈ J,α ∈]1,2].

(3)

Using the Euler approximation

∫ ti+1

ti
(tk− s)α−1 f (s,U(s))ds≈

∫ ti+1

ti
(tk− s)α−1 f (ti,U(ti))ds, i = 0, . . . ,k−1

in (3), we get

Uk =U0 +U1tk +
1

Γ(α)

k−1

∑
i=0

∫ ti+1

ti
(tk− s)α−1 f (ti,Ui)ds,

=U0 +U1tk +
hα

αΓ(α)

k−1

∑
i=0

[(k− i)α − (k− (i+1))α ] f (ti,Ui).

(4)

4. ERROR ESTIMATES

In this section, we investigate the mean square convergence of numerical schema (4).

Theorem 4 Assume that the function f satisfies
(H1) : f is mean square Lipschitz : ‖ f (t,U)− f (t,V )‖2 ≤ L‖U−V‖2,U,V ∈ C .

(H2) :
∥∥∥∥ ∂ f (t,U)

∂ t

∥∥∥∥
2
≤ l.

Then the numerical schema given by (4) is mean square converge.

Proof. Let ek denote the error defined as e0 = 0 and ek =Uk−U(tk).
We have

ek =
∫ tk

0

(tk− s)α−1

Γ(α)
f (s,U(s))ds− hα

αΓ(α)

k−1

∑
i=0

[(k− i)α − (k− (i+1))α ] f (ti,Ui).

Therefore

∥∥∥∥ek

∥∥∥∥
2
≤
∥∥∥∥∫ tk

0

(tk− s)α−1

Γ(α)
f (s,U(s))ds− hα

αΓ(α)

k−1

∑
i=0

[(k− i)α − (k− (i+1))α ] f (ti,U(ti))
∥∥∥∥

2

+
hα

αΓ(α)

k−1

∑
i=0

[(k− i)α − (k− (i+1))α ]

∥∥∥∥ f (ti,U(ti))− f (ti,Ui)

∥∥∥∥
2
.
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We have∥∥∥∥∫ tk

0

(tk− s)α−1

Γ(α)
f (s,U(s))ds− hα

αΓ(α)

k−1

∑
i=0

[(k− i)α − (k− (i+1))α ] f (ti,U(ti))
∥∥∥∥

2

=

∥∥∥∥ k−1

∑
i=0

∫ ti+1

ti
(tk− s)α−1[ f (t,U(t))− f (ti,U(ti))]ds

∥∥∥∥
2

≤
k−1

∑
i=0

∫ ti+1

ti
(tk− s)α−1[‖ f (t,U(t))− f (t,U(ti))‖2 +‖ f (t,U(ti))− f (ti,U(ti))‖2]ds

≤
k−1

∑
i=0

∫ ti+1

ti
(tk− s)α−1[L(U(t)−U(ti))+(t− ti)l]ds

We have U(t)−U(ti) =
∫ t

ti U
′(s)ds≤ hmaxs∈J U ′(s).

By simple calculation, we get∥∥∥∥∫ tk

0

(tk− s)α−1

Γ(α)
f (s,U(s))ds− hα

αΓ(α)

k−1

∑
i=0

[(k− i)α − (k− (i+1))α ] f (ti,U(ti))
∥∥∥∥

2

≤
tα
k
α

ωh,

where ω = Lmaxs∈J U ′(s)+ l.
In the other hand, we have

hα

αΓ(α)

k−1

∑
i=0

[(k− i)α − (k− (i+1))α ]‖ f (ti,U(ti))− f (ti,Ui)‖2,

≤ Lhα

αΓ(α)

k−1

∑
i=0

[(k− i)α − (k− (i+1))α ]‖ei‖2,

≤ Lhα

Γ(α)

k−1

∑
i=0

[(k− i)α−1]‖ei‖2

≤ LhT α−1

Γ(α)

k−1

∑
i=0
‖ei‖2

At the end, we get

‖ek‖2 ≤
tα
k
α

ωh+
LhT α−1

Γ(α)

k−1

∑
i=0
‖ei‖2.

Applying the Gronwall inequality [5][p.860, Lemma 3.5] we find

‖ek‖2 ≤ ζ h, ζ is a constant.

When h is small enough the numerical schema (4) is converge in the sense of mean square. The
prove is complete.

5. CONCLUSIONS

The topic of this research is to approximate the random solution of the fractional differen-
tial equations using fractional Euler method. We demonstrate that the proposed method is mean
square convergent. For upcoming work, we will study other types of numerical schema for ran-
dom fractional differential equations.
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