ON THE STRONGLY MID P-SUMMING OPERATORS AND APPLICATION

Ferradi Athmane

University of M'sila

ABSTRACT

In this paper, we introduce and study the new ideal of strongly mid *p*-summing linear operators between Banach spaces. We prove, an operator is strongly mid *p*-summing if and only if its adjoint is absolutely mid *p* ∗ -summing. This result led us to prove, *X* is *p*-Dunford-Pettis property $(1 < p < ∞)$ if and only if, so is X^* .

1. NOTATION AND PRELIMINARIES

The notation used in the paper is in general standard. The letters X, X_1, \dots, X_m, Y (*m* be in $\mathbb N$) shall denote Banach spaces over $\mathbb K$ (real or complex scalars field). We will denote by $\mathscr{L}(X_1,\dots,X_m;Y)$ the Banach space of all bounded multilinear operators from $X_1 \times \dots \times X_m$ into *Y* equipped with the operator norm. $\mathcal{L}(X;Y)$ the Banach space of all bounded linear operators $T: X \rightarrow Y$ endowed with the usual sup norm. The closed unit ball of *X* is denoted by B_X and its topological dual by $X^* = \mathscr{L}(X;\mathbb{K})$.

For a Banach space *X*, and $1 \le p \le \infty$, let p^* be its conjugate that is $1/p + 1/p^* = 1$. Let us define the sequences spaces we shall work with : (see [\[3,](#page-4-0) [2\]](#page-4-1)).

 $\ell_p(X)$ = the Banach space of absolutely *p*-summable sequences with the norm (1 ≤ *p* < ∞)

$$
\| (x_j)_{j=1}^{\infty} \|_p := \left(\sum_{j=1}^{\infty} \| x_j \|^p \right)^{1/p}.
$$

 $\ell_p^w(X)$ = the Banach space of weakly *p*-summable sequences with the norm (1 ≤ *p* < ∞)

$$
\| (x_j)_{j=1}^{\infty} \|_{w,p} := \sup_{x^* \in B_{X^*}} \left(\sum_{j=1}^{\infty} |x^* (x_j)|^p \right)^{1/p}.
$$

 $\ell_p^{mid}(X)$ the Banach space of mid *p*-summable sequences with the norm (1 ≤ *p* < ∞)

$$
\| (x_j)_{j=1}^{\infty} \|_{mid,p} := \sup_{(x_n^*)_{n=1}^{\infty} \in B_{\ell_p^w(X^*)}} \left(\sum_{j=1}^{\infty} \sum_{n=1}^{\infty} |x_n^*(x_j)|^p \right)^{1/p}.
$$

When $p = \infty$ we have $\| (x_j)_{j=1}^{\infty} \|_{\infty} = \| (x_j)_{j=1}^{\infty} \|_{w,\infty} = \| (x_j)_{j=1}^{\infty} \|_{mid,\infty} = \sup_j \|x_j\|$. The relationships between the various sequence spaces are given by [\[2\]](#page-4-1)

$$
\ell_p(X) \subsetneq \ell_p^{mid}(X) \subsetneq \ell_p^w(X),
$$

with

$$
\| (x_j)_{j=1}^{\infty} \|_p \leq \| (x_j)_{j=1}^{\infty} \|_{w,p} \leq \| (x_j)_{j=1}^{\infty} \|_{mid,p}.
$$

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

Recall that, for $1 \leq p < \infty$, we say that a continuous linear operator $T : X \to Y$ is absolutely *p*-summing if

$$
(T(x_j))_{j=1}^{\infty} \in \ell_p(Y) \text{ whenever } (x_j)_{j=1}^{\infty} \in \ell_p^w(Y).
$$

The class of absolutely *p*-summing operator from *X* to *Y* will be represented by $\Pi_p(X;Y)$. An equivalent formulation asserts that *T* is absolutely *p*-summing if there is a positive constant *C* such that

$$
||(T(x_j))_{j=1}^{\infty}||_p \leq C||(x_j)_{j=1}^{\infty}||_{w,p}
$$

for all $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$. The infimum of all $C > 0$ that satisfy the above inequality define a norm, denoted by $\pi_p(T)$.

Let $(\mathcal{I}(X;Y), \alpha(\cdot))$ be an operator ideal, we put

$$
\mathscr{I}^d(X;Y) = \{ T \in \mathscr{L}(X;Y) : T^* \in \mathscr{I}(Y^*;X^*) \}.
$$

For an operator $T \in \mathcal{I}^d(X;Y)$, we put $\alpha^d(T) = \alpha(T^*)$. With these notations $(\mathcal{I}^d(X;Y), \alpha^d(\cdot))$ is also a Banach operator ideal and is called the dual ideal of $(\mathcal{I}(X;Y), \alpha(\cdot))$ (see [\[6,](#page-4-2) Section 4]).

Let us recall now the definition of strongly *p*-summing linear operators. An operator $T \in$ $\mathscr{L}(X;Y)$ is strongly *p*-summing if there is a constant *C* such that

$$
\|(\langle T(x_j), y_j^* \rangle)_{j=1}^{\infty} \|_1 \le C \| (x_j)_{j=1}^{\infty} \|_p \| (y_j^*)_{j=1}^{\infty} \|_{w,p^*}
$$

for all $(x_j)_{j=1}^{\infty} \in \ell_p(X)$ and $(y_j^*)_{j=1}^{\infty} \in \ell_p^w(Y^*)$. The space $\mathscr{D}_p(X;Y)$ of all strongly *p*-summing linear operators from *X* into *Y* which is a Banach space with the norm *dp*(*T*) the infimum of all *C* > 0 that satisfy the above inequality. According to [\[5,](#page-4-3) [7\]](#page-4-4) we obtain $\mathcal{D}_p^d(X;Y) = \Pi_{p^*}(X;Y)$ and $\Pi_p^d(X;Y) = \mathscr{D}_{p^*}(X;Y).$

Our results are presented as follows. In first section [1,](#page-0-0) we recall important results and definitions to be used later. In section [2,](#page-1-0) we introduce and investigate a new ideal of strongly mid *p*-summing operators. We present a characterization given by a summability property. We also prove the related dual result : an operator $T \in \mathcal{L}(X;Y)$ is strongly mid *p*-summing (*T* ∈ $\mathscr{D}_p^{mid}(X;Y)$ if and only if its adjoint T^* is absolutely mid p^* -summing $(T^* \in \Pi_{p^*}^{mid}(Y^*;X^*))$. We study Banach space *X* for which $id_X \in \Pi_p^{mid}$ (Theorem [6\)](#page-3-0), $id_X \in \mathcal{D}_p^{mid}$ (Theorem [8\)](#page-3-1), $\mathcal{D}_p(\ell_p;X) =$ $\mathscr{L}(\ell_p; X)$ (Theorem [10\)](#page-3-2). We also prove, *X* has the *p*-Dunford-Pettis property if and only if X^* has the *p*-Dunford-Pettis property.

2. STRONGLY MID SUMMING LINEAR OPERATORS

Botelho, Campos and Santos [\[2\]](#page-4-1) introduced the concept of absolutely mid *p*-summing operators. For $1 \le p < \infty$, an operator $T \in \mathcal{L}(X;Y)$ is absolutely mid *p*-summing if

$$
(T(x_j))_{j=1}^{\infty} \in \ell_p^{mid}(Y) \text{ whenever } (x_j)_{j=1}^{\infty} \in \ell_p(X).
$$

By $\Pi_p^{mid}(X;Y)$, we denote the space of absolutely mid *p*-summing operators.

We introduce the concept of strongly mid *p*-summing linear operators as a characterization of the conjugates of absolutely mid p^* -summing linear operators. This idea seems to have appeared for the first time in [\[5\]](#page-4-3) and [\[7\]](#page-4-4).

Definition 1 *Let* $1 < p ≤ ∞$ *. A mapping* $T ∈ \mathcal{L}(X;Y)$ *is strongly mid p-summing if there exist a constant* $C > 0$ *such that*

$$
\|(\langle T(x_j), y_j^*\rangle)_{j=1}^k\|_1 \le C \|(x_j)_{j=1}^k\|_p \|(y_j^*)_{j=1}^k\|_{mid,p^*}
$$
 (1)

for any $(x_j)_{j=1}^k \subset X$ and $(y_j^*)_{j=1}^k \subset Y^*$. $\mathscr{D}_p^{mid}(X;Y)$ denotes the space of all strongly mid p-*summing operators from X to Y. The least C for which [\(1\)](#page-1-1) holds will be written* $d_p^{mid}(T)$ *. From the definition it is clear that* $\mathscr{D}_p(X;Y) \subset \mathscr{D}_p^{mid}(X;Y)$ *and* $d_p^{mid}(\cdot) \leq d_p(\cdot)$ *.*

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

For $T \in \mathcal{L}(X;Y)$. The induced map $\varphi_T : X \times Y^* \to \mathbb{K}$ given by $\varphi_T(x, y^*) = \langle T(x), y^* \rangle$ for all $x \in X$ and $y^* \in Y^*$ is continuous bilinear. Using the abstract approach of [\[1\]](#page-4-5) and Proposition 1.9 in [\[2\]](#page-4-1), we can see that the next proposition is immediate consequences of [\[1,](#page-4-5) Proposition 2.4].

Proposition 1 *Let* $T \in \mathcal{L}(X;Y)$ *, the following assertions are equivalent.*

- *1.* $T \in \mathcal{D}_p^{mid}(X;Y)$.
- 2. $(\varphi_T(x_j, y_j^*))_{j=1}^{\infty} \in \ell_1$ whenever $(x_j)_{j=1}^{\infty} \in \ell_p(X)$ and $(y_j^*)_{j=1}^{\infty} \in \ell_{p^*}^{mid}(Y^*)$.
- 3. The induced map $\widehat{\varphi}_T : \ell_p(X) \times \ell_{p^*}^{mid}(Y^*) \to \ell_1$ given by $\widehat{\varphi}_T((x_j)_{j=1}^{\infty}, (y_j^*)_{j=1}^{\infty}) = (\varphi_T(x_j, y_j^*))_{j=1}^{\infty}$ is a well-define and continuous bilinear operator.
- *4. There exist a constant C* > 0 *such that*

$$
\|(\varphi_T(x_j, y_j^*))_{j=1}^{\infty}\|_1 \le C \|(x_j)_{j=1}^{\infty}\|_p \|(y_j^*)_{j=1}^{\infty}\|_{mid,p^*}.
$$
 (2)

for any $(x_j)_{j=1}^{\infty} \in \ell_p(X)$ *and* $(y_j^*)_{j=1}^{\infty} \in \ell_{p^*}^{mid}(Y^*)$.

5. There exist a constant C > 0 *such that*

$$
\|(\varphi_T(x_j, y_j^*))_{j=1}^k\|_1 \le C \|(x_j)_{j=1}^k\|_p \|(y_j^*)_{j=1}^k\|_{mid,p^*}.
$$
\n(3)

for any $(x_j)_{j=1}^k \subset X$ *and* $(y_j^*)_{j=1}^k \subset Y^*$.

Moreover, $d_p^{mid}(T) = ||\widehat{\phi_T}|| = \inf\{C : (2) holds\} = \inf\{C : (3) holds\}.$ $d_p^{mid}(T) = ||\widehat{\phi_T}|| = \inf\{C : (2) holds\} = \inf\{C : (3) holds\}.$ $d_p^{mid}(T) = ||\widehat{\phi_T}|| = \inf\{C : (2) holds\} = \inf\{C : (3) holds\}.$ $d_p^{mid}(T) = ||\widehat{\phi_T}|| = \inf\{C : (2) holds\} = \inf\{C : (3) holds\}.$ $d_p^{mid}(T) = ||\widehat{\phi_T}|| = \inf\{C : (2) holds\} = \inf\{C : (3) holds\}.$

Theorem 2 $(\mathscr{D}_{p}^{mid}(X;Y), d_{p}^{mid}(\cdot))$ *is a Banach operator ideal.*

Proof. Using the abstract framework, notation and language [\[1\]](#page-4-5), we find that a linear operator *T* is strongly *p*-summing if and only if φ_T is $(\ell_p(.)\ell_p^{mid}(.);\ell_1)$ -summing. Since $1/p+1/p^* = 1$ we obtain

$$
\|(\lambda_j^1.\lambda_j^2)_{j=1}^{\infty}\|_1 \leq \|(\lambda_j^1)_{j=1}^{\infty}\|_{\ell_p(\mathbb{K})}\|(\lambda_j^2)_{j=1}^{\infty}\|_{\ell_{p^*}(\mathbb{K})} = \|(\lambda_j^1)_{j=1}^{\infty}\|_{\ell_p(\mathbb{K})}\|(\lambda_j^2)_{j=1}^{\infty}\|_{\ell_{p^*}^{\text{mid}}(\mathbb{K})}.
$$

Therefor, $\ell_p(\mathbb{K})\ell_{p^*}^{mid}(\mathbb{K}) = \ell_p(\mathbb{K})\ell_{p^*}(\mathbb{K}) \stackrel{1}{\hookrightarrow} \ell_1$. In addition, all the sequence classes involved are linearly stable (see [\[2,](#page-4-1) Proposition 1.10]). So, form [\[1,](#page-4-5) Theorem 3.6] it follows that $(\mathcal{D}_{p}^{mid}, d_{p}^{mid}(.))$ is a Banach operators ideal. In the next theorem, we will show that in fact the absolutely mid *p*-summing linear operators is the adjoint of strongly mid *p*-summing linear operators that will be useful throughout our section.

Theorem 3 Let $1 < p \le \infty$, $T \in \mathcal{L}(X;Y)$. Then $T \in \mathcal{D}_p^{mid}(X;Y)$ if and only if $T^* \in \Pi_{p^*}^{mid}(Y^*;X^*)$. *Moreover,* $d_p^{mid}(T) = \pi_{p^*}^{mid}(T^*)$ *.*

Proof. Assume that $T \in \mathcal{D}_p^{mid}(X;Y)$. For $(x_j)_{j=1}^{\infty} \in \ell_p(X)$ and $(y_j^*)_{j=1}^{\infty} \in \ell_{p^*}^{mid}(Y^*)$. We have

$$
\|(\langle T(x_j), y_j^*\rangle)_{j=1}^{\infty}\|_1 = \|(\langle T^*(y_j^*), x_j \rangle)_{j=1}^{\infty}\|_1 \leq d_p^{mid}(T) \|(x_j)_{j=1}^{\infty}\|_p \|(y_j^*)_{j=1}^{\infty}\|_{mid,p^*}
$$

by taking the supremum over the unit ball in $\ell_p(X)$ we obtain $\|(T^*(y_j^*))_{j=1}^\infty\|_{p^*} \leq C \|(y_j^*)_{j=1}^\infty\|_{mid,p^*}.$ Therefore, $T^*: Y^* \to X^*$ is absolutely mid p^* -summing and $d_p^{mid}(T) \geq \pi_p^{mid}(T^*)$. Conversely, let $T^* \in \Pi_{p^*}^{mid}(Y^*;X^*)$. For $(x_j)_{j=1}^{\infty} \in \ell_p(X)$ and $(y_j^*)_{j=1}^{\infty} \in \ell_{p^*}^{mid}(Y^*)$. By Hölder's inequality we have

$$
\sum_{j=1}^{\infty} |\langle T(x_j), y_j^* \rangle| \leq ||(x_j)_{j=1}^{\infty}||_p ||(T^*(y_j^*))_{j=1}^{\infty}||_{p^*} \leq \pi_p^{mid}(T^*) ||(x_j)_{j}^{\infty}||_p ||(y_j^*))_{j=1}^{\infty}||_{mid,p^*}.
$$

Therefore *T* is strongly mid *p*-summing and $d_p^{mid}(T) = \pi_p^{mid}(T^*)$. As a consequence, we obtain the following corollary which is a straightforward consequence of the preceding theorem and Theorem 2.8 in [\[2\]](#page-4-1).

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

Corollary 4 *Let* $1 \leq p < \infty$, $T \in \mathcal{L}(X;Y)$ *. If* $T^* \in \mathcal{D}_{p^*}^{mid}(Y^*;X^*)$ *then* $T \in \Pi_{p}^{mid}(X;Y)$ *.*

Recall that an operator ideal $\mathcal{I}(X;Y)$ is surjective if $T \in \mathcal{I}(X;Y)$ whenever $T \circ Q \in \mathcal{I}(X_0;Y)$, where $Q: X_0 \to X$ is the quotient map. As consequence, we obtain the following proposition which is a straightforward consequence of Theorem [3,](#page-2-2) and [\[2,](#page-4-1) Proposition 2.8] and [\[6,](#page-4-2) Section 4].

Proposition 5 The operator ideal $(\mathcal{D}_{p}^{mid}, d_{p}^{mid})$ is surjective.

The Dvoretzky–Rogers theorem (see [\[3\]](#page-4-0)) states that the Banach space *X* is finite dimensional if, and only if, *idX* is *p*-summing. Now we will give a results in this context.

We say that a Banach space *X* is a weak mid *p*-space (or *p*-Dunford-Pettis property see [\[4\]](#page-4-6)) if $\ell_p^{mid}(X) = \ell_p^w(X)$ and it is a strong mid *p*-space if $\ell_p^{mid}(X) = \ell_p(X)$.

The next result is a reformulation of [\[2,](#page-4-1) Theorem 2.7].

Theorem 6 *The following are equivalent : 1) X is a strong mid p-space. 2)* $id_X \in \prod_p^{mid}(X;X)$. *3*) $\mathscr{L}(X;Y) = \prod_{p}^{mid}(X;Y)$ *for every Banach space Y. 4*) $\mathscr{L}(Y;X) = \prod_{p}^{mid}(Y;X)$ for every Banach space Y. *5) X* is a subspace of $L_p(\mu)$ *for some Borel measure* μ *.*

Corollary 7 *If X*∗∗ *is a strong mid p-space then X is a strong mid p-space.*

Proof. Is a direct consequence of Theorem [6](#page-3-0) and [\[2,](#page-4-1) Proposition 2.8]. ■

Theorem 8 *The following are equivalent : 1) X*[∗] *is a strong mid p*[∗] *-space. 2)* $id_X \in \mathcal{D}_p^{mid}(X;X)$. *3*) $\mathscr{L}(X;Y) = \mathscr{D}_{p}^{mid}(X;Y)$ for every Banach space Y. *4*) $\mathscr{L}(Y;X) = \mathscr{D}_{p}^{mid}(Y;X)$ for every Banach space Y. *5)* $id_{X^*} \in \prod_{p^*}^{mid}(X^*; X^*)$ *. 6*) $\mathscr{L}(X^*;Y) = \prod_{p^*}^{mid}(X^*;Y)$ for every Banach space Y. *7*) $\mathscr{L}(Y;X^*) = \prod_{p^*}^{mid}(Y;X^*)$ for every Banach space Y. 8) X^* *is a subspace of* $L_{p^*}(\mu)$ *for some Borel measure* μ *.*

Proof. By Theorem [3](#page-2-2) and Theorem [6,](#page-3-0) we have

7 $\mathbb{\hat{I}}$ 8 ⇔ 1 ⇔ 5 ⇔ 6 $\hat{\mathbb{I}}$ $3 \Leftrightarrow 2 \Leftrightarrow 4$

É

Theorem 9 *[\[2,](#page-4-1) Theorem 2.6][\[4,](#page-4-6) Theorem 3.7] The following are equivalent : 1) X has the p-Dunford-Pettis property. 2)* $\Pi_p^{mid}(X;Y) = \Pi_p(X;Y)$ *for every Banach space Y. 3*) $\Pi_p^{mid}(X; \ell_p) = \Pi_p(X; \ell_p) = \mathcal{L}(X; \ell_p).$ $\mathscr{D}_{p^*}(\ell_{p^*};X^*) = \mathscr{L}(\ell_{p^*};X^*).$

Theorem 10 *The following are equivalent : 1) X*[∗] *has the p-Dunford-Pettis property. 2)* $\mathscr{D}_{p^*}^{mid}(Y;X) = \mathscr{D}_{p^*}(Y;X)$ for every Banach space Y. *3*) $\Pi_p^{mid}(X^*; Y^*) = \Pi_p(X^*; Y^*)$ for every Banach space Y. *4*) $\Pi_p^{mid}(X^*; \ell_p) = \Pi_p(X^*; \ell_p) = \mathscr{L}(X^*; \ell_p).$ *5*) $\mathscr{D}_{p^*}^{mid}(\ell_{p^*};X) = \mathscr{D}_{p^*}(\ell_{p^*};X) = \mathscr{L}(\ell_{p^*};X)$. *6*) $\mathscr{D}_{p^*}(\ell_{p^*};X) = \mathscr{L}(\ell_{p^*};X)$.

Proof. follows from Theorem [3](#page-2-2) and Theorem [9.](#page-3-3) ■

Corollary 11 *X* ∗∗ *has the p-Dunford-Pettis property if and only if X has the p-Dunford-Pettis property.*

Corollary 12 *[\[4,](#page-4-6) Corollary 3.9] If X*[∗] *has the p-Dunford-Pettis property, so does X.*

Theorem 13 *X* [∗] *has the p-Dunford-Pettis property if and only if X has the p-Dunford-Pettis property.*

3. REFERENCES

- [1] G. Botelho and J.R. Campos. On the transformation of vector-valued sequences by multilinear operators, Monatsh. Math 183 (2017), 415-435.
- [2] G. Botelho, J.R. Campos and J. Santos, Operator ideals related to absolutely summing and Cohen strongly summing operators, Pacific J. Math. 287 (2017), 1–17.
- [3] J. Diestel, H. Jarchow and A. Tonge. Absolutely summing operators. Cambridge University Press, Cambridge, (1995).
- [4] A. Karn and D. Sinha, An operator summability of sequences in Banach spaces, Glasg. Math. J. 56 (2014), no. 2, 427–437.
- [5] J. Cohen. Absolutely *p*-summing, *p*-nuclear operators and their conjugates, conjugates, Math. Ann 201 (1973), 177-200 .
- [6] A. Pietsch. Operator ideals. Deutsch. Verlag Wiss, Berlin, 1978; North-Holland, Amsterdam-London-New York-Tokyo, (1980).
- [7] Apiola, H. : Duality between spaces of *p*-summable sequences, (*p*,*q*)-summing operators and characterization of nuclearity. Math. Ann 219, 53–64 (1976).