ON THE STRONGLY MID P-SUMMING OPERATORS AND APPLICATION

Ferradi Athmane

University of M'sila

ABSTRACT

In this paper, we introduce and study the new ideal of strongly mid *p*-summing linear operators between Banach spaces. We prove, an operator is strongly mid *p*-summing if and only if its adjoint is absolutely mid p^* -summing. This result led us to prove, *X* is *p*-Dunford-Pettis property $(1 if and only if, so is <math>X^*$.

1. NOTATION AND PRELIMINARIES

The notation used in the paper is in general standard. The letters X, X_1, \dots, X_m , Y (*m* be in \mathbb{N}) shall denote Banach spaces over \mathbb{K} (real or complex scalars field). We will denote by $\mathscr{L}(X_1, \dots, X_m; Y)$ the Banach space of all bounded multilinear operators from $X_1 \times \dots \times X_m$ into Y equipped with the operator norm. $\mathscr{L}(X;Y)$ the Banach space of all bounded linear operators $T: X \to Y$ endowed with the usual sup norm. The closed unit ball of X is denoted by B_X and its topological dual by $X^* = \mathscr{L}(X;\mathbb{K})$.

For a Banach space X, and $1 \le p \le \infty$, let p^* be its conjugate that is $1/p + 1/p^* = 1$. Let us define the sequences spaces we shall work with : (see [3, 2]).

 $\ell_p(X)$ = the Banach space of absolutely *p*-summable sequences with the norm $(1 \le p < \infty)$

$$\| (x_j)_{j=1}^{\infty} \|_p := \left(\sum_{j=1}^{\infty} \| x_j \|^p \right)^{1/p}$$

 $\ell_p^w(X)$ = the Banach space of weakly *p*-summable sequences with the norm $(1 \le p < \infty)$

$$\| (x_j)_{j=1}^{\infty} \|_{w,p} := \sup_{x^* \in B_{X^*}} \left(\sum_{j=1}^{\infty} |x^* (x_j)|^p \right)^{1/p}.$$

 $\ell_p^{mid}(X)$ the Banach space of mid *p*-summable sequences with the norm $(1 \le p < \infty)$

$$\| (x_j)_{j=1}^{\infty} \|_{mid,p} := \sup_{(x_n^*)_{n=1}^{\infty} \in B_{\ell_p^{W}(X^*)}} \left(\sum_{j=1}^{\infty} \sum_{n=1}^{\infty} |x_n^*(x_j)|^p \right)^{1/p}.$$

When $p = \infty$ we have $\| (x_j)_{j=1}^{\infty} \|_{\infty} = \| (x_j)_{j=1}^{\infty} \|_{w,\infty} = \| (x_j)_{j=1}^{\infty} \|_{mid,\infty} = \sup_j \|x_j\|$. The relationships between the various sequence spaces are given by [2]

$$\ell_p(X) \subsetneq \ell_p^{mid}(X) \subsetneq \ell_p^w(X),$$

with

$$\| (x_j)_{j=1}^{\infty} \|_p \leq \| (x_j)_{j=1}^{\infty} \|_{w,p} \leq \| (x_j)_{j=1}^{\infty} \|_{mid,p}$$

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

Recall that, for $1 \le p < \infty$, we say that a continuous linear operator $T : X \to Y$ is absolutely *p*-summing if

$$(T(x_j))_{j=1}^{\infty} \in \ell_p(Y)$$
 whenever $(x_j)_{j=1}^{\infty} \in \ell_p^w(Y)$.

The class of absolutely *p*-summing operator from *X* to *Y* will be represented by $\Pi_p(X;Y)$. An equivalent formulation asserts that *T* is absolutely *p*-summing if there is a positive constant *C* such that

$$||(T(x_j))_{j=1}^{\infty}||_p \le C ||(x_j)_{j=1}^{\infty}||_{w,p}$$

for all $(x_j)_{j=1}^{\infty} \in \ell_p^w(X)$. The infimum of all C > 0 that satisfy the above inequality define a norm, denoted by $\pi_p(T)$.

Let $(\mathscr{I}(X;Y), \alpha(\cdot))$ be an operator ideal, we put

$$\mathscr{I}^d(X;Y) = \{T \in \mathscr{L}(X;Y) : T^* \in \mathscr{I}(Y^*;X^*)\}.$$

For an operator $T \in \mathscr{I}^d(X;Y)$, we put $\alpha^d(T) = \alpha(T^*)$. With these notations $(\mathscr{I}^d(X;Y), \alpha^d(\cdot))$ is also a Banach operator ideal and is called the dual ideal of $(\mathscr{I}(X;Y), \alpha(\cdot))$ (see [6, Section 4]).

Let us recall now the definition of strongly *p*-summing linear operators. An operator $T \in \mathscr{L}(X;Y)$ is strongly *p*-summing if there is a constant *C* such that

$$\|(\langle T(x_j), y_j^* \rangle)_{j=1}^{\infty}\|_1 \le C \|(x_j)_{j=1}^{\infty}\|_p \|(y_j^*)_{j=1}^{\infty}\|_{w,p}$$

for all $(x_j)_{j=1}^{\infty} \in \ell_p(X)$ and $(y_j^*)_{j=1}^{\infty} \in \ell_{p^*}^{w}(Y^*)$. The space $\mathscr{D}_p(X;Y)$ of all strongly *p*-summing linear operators from *X* into *Y* which is a Banach space with the norm $d_p(T)$ the infimum of all C > 0 that satisfy the above inequality. According to [5, 7] we obtain $\mathscr{D}_p^d(X;Y) = \prod_{p^*}(X;Y)$ and $\prod_p^d(X;Y) = \mathscr{D}_{p^*}(X;Y)$.

Our results are presented as follows. In first section 1, we recall important results and definitions to be used later. In section 2, we introduce and investigate a new ideal of strongly mid *p*-summing operators. We present a characterization given by a summability property. We also prove the related dual result : an operator $T \in \mathscr{L}(X;Y)$ is strongly mid *p*-summing ($T \in \mathscr{D}_p^{mid}(X;Y)$) if and only if its adjoint T^* is absolutely mid *p**-summing ($T^* \in \Pi_{p^*}^{mid}(Y^*;X^*)$). We study Banach space *X* for which $id_X \in \Pi_p^{mid}$ (Theorem 6), $id_X \in \mathscr{D}_p^{mid}$ (Theorem 8), $\mathscr{D}_p(\ell_p;X) = \mathscr{L}(\ell_p;X)$ (Theorem 10). We also prove, *X* has the *p*-Dunford-Pettis property if and only if X^* has the *p*-Dunford-Pettis property.

2. STRONGLY MID SUMMING LINEAR OPERATORS

Botelho, Campos and Santos [2] introduced the concept of absolutely mid *p*-summing operators. For $1 \le p < \infty$, an operator $T \in \mathscr{L}(X;Y)$ is absolutely mid *p*-summing if

$$(T(x_j))_{j=1}^{\infty} \in \ell_p^{mid}(Y)$$
 whenever $(x_j)_{j=1}^{\infty} \in \ell_p(X)$

By $\Pi_p^{mid}(X;Y)$, we denote the space of absolutely mid *p*-summing operators.

We introduce the concept of strongly mid *p*-summing linear operators as a characterization of the conjugates of absolutely mid p^* -summing linear operators. This idea seems to have appeared for the first time in [5] and [7].

Definition 1 Let $1 . A mapping <math>T \in \mathcal{L}(X;Y)$ is strongly mid p-summing if there exist a constant C > 0 such that

$$(\langle T(x_j), y_j^* \rangle)_{j=1}^k \|_1 \le C \|(x_j)_{j=1}^k \|_p \|(y_j^*)_{j=1}^k \|_{mid, p^*}$$
(1)

for any $(x_j)_{j=1}^k \subset X$ and $(y_j^*)_{j=1}^k \subset Y^*$. $\mathscr{D}_p^{mid}(X;Y)$ denotes the space of all strongly mid psumming operators from X to Y. The least C for which (1) holds will be written $d_p^{mid}(T)$. From the definition it is clear that $\mathscr{D}_p(X;Y) \subset \mathscr{D}_p^{mid}(X;Y)$ and $d_p^{mid}(\cdot) \leq d_p(\cdot)$.

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

For $T \in \mathscr{L}(X;Y)$. The induced map $\varphi_T : X \times Y^* \to \mathbb{K}$ given by $\varphi_T(x,y^*) = \langle T(x), y^* \rangle$ for all $x \in X$ and $y^* \in Y^*$ is continuous bilinear. Using the abstract approach of [1] and Proposition 1.9 in [2], we can see that the next proposition is immediate consequences of [1, Proposition 2.4].

Proposition 1 Let $T \in \mathcal{L}(X;Y)$, the following assertions are equivalent.

- 1. $T \in \mathscr{D}_p^{mid}(X;Y)$.
- 2. $(\varphi_T(x_j, y_j^*))_{j=1}^{\infty} \in \ell_1$ whenever $(x_j)_{j=1}^{\infty} \in \ell_p(X)$ and $(y_j^*)_{j=1}^{\infty} \in \ell_{p^*}^{mid}(Y^*)$.
- 3. The induced map $\widehat{\varphi_T}$: $\ell_p(X) \times \ell_{p^*}^{mid}(Y^*) \to \ell_1$ given by $\widehat{\varphi_T}((x_j)_{j=1}^{\infty}, (y_j^*)_{j=1}^{\infty}) = (\varphi_T(x_j, y_j^*))_{j=1}^{\infty}$ is a well-define and continuous bilinear operator.
- 4. There exist a constant C > 0 such that

$$\|(\varphi_T(x_j, y_j^*))_{j=1}^{\infty}\|_1 \le C \|(x_j)_{j=1}^{\infty}\|_p \|(y_j^*)_{j=1}^{\infty}\|_{mid, p^*}.$$
(2)

for any $(x_j)_{j=1}^{\infty} \in \ell_p(X)$ and $(y_j^*)_{j=1}^{\infty} \in \ell_{p^*}^{mid}(Y^*)$.

5. There exist a constant C > 0 such that

$$\|(\varphi_T(x_j, y_j^*))_{j=1}^k\|_1 \le C \|(x_j)_{j=1}^k\|_p \|(y_j^*)_{j=1}^k\|_{mid, p^*}.$$
(3)

for any $(x_j)_{j=1}^k \subset X$ and $(y_j^*)_{j=1}^k \subset Y^*$.

Moreover, $d_p^{mid}(T) = \|\widehat{\varphi}_T\| = \inf\{C : (2) \text{ holds}\} = \inf\{C : (3) \text{ holds}\}.$

Theorem 2 $(\mathscr{D}_p^{mid}(X;Y), d_p^{mid}(\cdot))$ is a Banach operator ideal.

Proof. Using the abstract framework, notation and language [1], we find that a linear operator *T* is strongly *p*-summing if and only if φ_T is $(\ell_p(.)\ell_{p^*}^{mid}(.);\ell_1)$ -summing. Since $1/p + 1/p^* = 1$ we obtain

$$\|(\lambda_{j}^{1}.\lambda_{j}^{2})_{j=1}^{\infty}\|_{1} \leq \|(\lambda_{j}^{1})_{j=1}^{\infty}\|_{\ell_{p}(\mathbb{K})}\|(\lambda_{j}^{2})_{j=1}^{\infty}\|_{\ell_{p^{*}}(\mathbb{K})} = \|(\lambda_{j}^{1})_{j=1}^{\infty}\|_{\ell_{p}(\mathbb{K})}\|(\lambda_{j}^{2})_{j=1}^{\infty}\|_{\ell_{p^{*}}(\mathbb{K})}$$

Therefor, $\ell_p(\mathbb{K})\ell_{p^*}^{mid}(\mathbb{K}) = \ell_p(\mathbb{K})\ell_{p^*}(\mathbb{K}) \xrightarrow{1} \ell_1$. In addition, all the sequence classes involved are linearly stable (see [2, Proposition 1.10]). So, form [1, Theorem 3.6] it follows that $(\mathscr{D}_p^{mid}, d_p^{mid}, d_p^{mid}(.))$ is a Banach operators ideal. \blacksquare In the next theorem, we will show that in fact the absolutely mid *p*-summing linear operators is the adjoint of strongly mid *p*-summing linear operators that will be useful throughout our section.

Theorem 3 Let $1 , <math>T \in \mathscr{L}(X;Y)$. Then $T \in \mathscr{D}_p^{mid}(X;Y)$ if and only if $T^* \in \Pi_{p^*}^{mid}(Y^*;X^*)$. Moreover, $d_p^{mid}(T) = \pi_{p^*}^{mid}(T^*)$.

Proof. Assume that $T \in \mathscr{D}_p^{mid}(X;Y)$. For $(x_j)_{j=1}^{\infty} \in \ell_p(X)$ and $(y_j^*)_{j=1}^{\infty} \in \ell_{p^*}^{mid}(Y^*)$. We have

$$\|(\langle T(x_j), y_j^* \rangle)_{j=1}^{\infty}\|_1 = \|(\langle T^*(y_j^*), x_j \rangle)_{j=1}^{\infty}\|_1 \le d_p^{mid}(T)\|(x_j)_{j=1}^{\infty}\|_p\|(y_j^*)_{j=1}^{\infty}\|_{mid,p}$$

by taking the supremum over the unit ball in $\ell_p(X)$ we obtain $||(T^*(y_j^*))_{j=1}^{\infty}||_{p^*} \leq C||(y_j^*)_{j=1}^{\infty}||_{mid,p^*}$. Therefore, $T^*: Y^* \to X^*$ is absolutely mid p^* -summing and $d_p^{mid}(T) \geq \pi_p^{mid}(T^*)$. Conversely, let $T^* \in \prod_{p^*}^{mid}(Y^*;X^*)$. For $(x_j)_{j=1}^{\infty} \in \ell_p(X)$ and $(y_j^*)_{j=1}^{\infty} \in \ell_p^{mid}(Y^*)$. By Hölder's inequality we have

$$\sum_{j=1}^{\infty} |\langle T(x_j), y_j^* \rangle| \le \|(x_j)_{j=1}^{\infty}\|_p \|(T^*(y_j^*))_{j=1}^{\infty}\|_{p^*} \le \pi_p^{mid}(T^*)\|(x_j)_j^{\infty}\|_p \|(y_j^*))_{j=1}^{\infty}\|_{mid,p^*}.$$

Therefore T is strongly mid p-summing and $d_p^{mid}(T) = \pi_p^{mid}(T^*)$. As a consequence, we obtain the following corollary which is a straightforward consequence of the preceding theorem and Theorem 2.8 in [2].

Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

Corollary 4 Let $1 \le p < \infty$, $T \in \mathscr{L}(X;Y)$. If $T^* \in \mathscr{D}_{p^*}^{mid}(Y^*;X^*)$ then $T \in \prod_p^{mid}(X;Y)$.

Recall that an operator ideal $\mathscr{I}(X;Y)$ is surjective if $T \in \mathscr{I}(X;Y)$ whenever $T \circ Q \in \mathscr{I}(X_0;Y)$, where $Q: X_0 \to X$ is the quotient map. As consequence, we obtain the following proposition which is a straightforward consequence of Theorem 3, and [2, Proposition 2.8] and [6, Section 4].

Proposition 5 The operator ideal $(\mathscr{D}_p^{mid}, d_p^{mid})$ is surjective.

The Dvoretzky–Rogers theorem (see [3]) states that the Banach space X is finite dimensional if, and only if, id_X is *p*-summing. Now we will give a results in this context.

We say that a Banach space X is a weak mid p-space (or p-Dunford-Pettis property see [4]) if $\ell_p^{mid}(X) = \ell_p^w(X)$ and it is a strong mid *p*-space if $\ell_p^{mid}(X) = \ell_p(X)$. The next result is a reformulation of [2, Theorem 2.7].

Theorem 6 The following are equivalent :

1) X is a strong mid p-space. 2) $id_X \in \Pi_p^{mid}(X;X)$. 3) $\mathscr{L}(X;Y) = \prod_{p}^{mid}(X;Y)$ for every Banach space Y. 4) $\mathscr{L}(Y;X) = \prod_{p=0}^{prid}(Y;X)$ for every Banach space Y. 5) X is a subspace of $L_p(\mu)$ for some Borel measure μ .

Corollary 7 If X^{**} is a strong mid p-space then X is a strong mid p-space.

Proof. Is a direct consequence of Theorem 6 and [2, Proposition 2.8]. ■

Theorem 8 The following are equivalent : 1) X^* is a strong mid p^* -space. 2) $id_X \in \mathscr{D}_p^{mid}(X;X).$ 3) $\mathscr{L}(X;Y) = \mathscr{D}_p^{mid}(X;Y)$ for every Banach space Y. 4) $\mathscr{L}(Y;X) = \mathscr{D}_p^{mid}(Y;X)$ for every Banach space Y. 5) $id_{X^*} \in \prod_{p^*}^{mid} (X^*; X^*).$ 6) $\mathscr{L}(X^*;Y) = \prod_{p^*}^{mid}(X^*;Y)$ for every Banach space Y. 7) $\mathscr{L}(Y;X^*) = \prod_{p^*}^{rid}(Y;X^*)$ for every Banach space Y. 8) X^* is a subspace of $L_{p^*}(\mu)$ for some Borel measure μ .

Proof. By Theorem 3 and Theorem 6, we have

Theorem 9 [2, Theorem 2.6][4, Theorem 3.7] The following are equivalent : 1) X has the p-Dunford-Pettis property. 2) $\Pi_p^{mid}(X;Y) = \Pi_p(X;Y)$ for every Banach space Y. 3) $\Pi_p^{rid}(X;\ell_p) = \Pi_p(X;\ell_p) = \mathscr{L}(X;\ell_p).$ 4) $\mathscr{D}_{p^*}(\ell_{p^*};X^*) = \mathscr{L}(\ell_{p^*};X^*).$

Theorem 10 The following are equivalent : 1) X^* has the p-Dunford-Pettis property. 2) $\mathscr{D}_{p^*}^{mid}(Y;X) = \mathscr{D}_{p^*}(Y;X)$ for every Banach space Y. 3) $\Pi_p^{mid}(X^*;Y^*) = \Pi_p(X^*;Y^*)$ for every Banach space Y. 4) $\Pi_p^{mid}(X^*;\ell_p) = \Pi_p(X^*;\ell_p) = \mathscr{L}(X^*;\ell_p).$ 5) $\mathscr{D}_{p^*}^{mid}(\ell_{p^*};X) = \mathscr{D}_p(\ell_{p^*};X) = \mathscr{L}(\ell_{p^*};X).$ 6) $\mathscr{D}_{p^*}(\ell_{p^*};X) = \mathscr{L}(\ell_{p^*};X).$

Proof. follows from Theorem 3 and Theorem 9. ■

Corollary 11 X^{**} has the p-Dunford-Pettis property if and only if X has the p-Dunford-Pettis property.

Corollary 12 [4, Corollary 3.9] If X^* has the p-Dunford-Pettis property, so does X.

Theorem 13 X^* has the p-Dunford-Pettis property if and only if X has the p-Dunford-Pettis property.

3. REFERENCES

- [1] G. Botelho and J.R. Campos. On the transformation of vector-valued sequences by multilinear operators, Monatsh. Math 183 (2017), 415-435.
- [2] G. Botelho, J.R. Campos and J. Santos, Operator ideals related to absolutely summing and Cohen strongly summing operators, Pacific J. Math. 287 (2017), 1–17.
- [3] J. Diestel, H. Jarchow and A. Tonge. Absolutely summing operators. Cambridge University Press, Cambridge, (1995).
- [4] A. Karn and D. Sinha, An operator summability of sequences in Banach spaces, Glasg. Math. J. 56 (2014), no. 2, 427–437.
- [5] J. Cohen. Absolutely p-summing, p-nuclear operators and their conjugates, conjugates, Math. Ann 201 (1973), 177-200.
- [6] A. Pietsch. Operator ideals. Deutsch. Verlag Wiss, Berlin, 1978; North-Holland, Amsterdam-London-New York-Tokyo, (1980).
- [7] Apiola, H. : Duality between spaces of *p*-summable sequences, (p,q)-summing operators and characterization of nuclearity. Math. Ann **219**, 53–64 (1976).