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ABSTRACT

In this paper, we introduce and study the new ideal of strongly mid p-summing linear operators
between Banach spaces. We prove, an operator is strongly mid p-summing if and only if its
adjoint is absolutely mid p*-summing. This result led us to prove, X is p-Dunford-Pettis property
(I < p <o) if and only if, so is X*.

1. NOTATION AND PRELIMINARIES

The notation used in the paper is in general standard. The letters X, Xy, -, Xy, Y (m be
in N ) shall denote Banach spaces over K (real or complex scalars field). We will denote by
Z (X1, ,Xm;Y) the Banach space of all bounded multilinear operators from X X - - - X X, into
Y equipped with the operator norm. .2’ (X;Y) the Banach space of all bounded linear operators
T : X — Y endowed with the usual sup norm. The closed unit ball of X is denoted by By and its
topological dual by X* = .Z(X;K).

For a Banach space X, and 1 < p < oo, let p* be its conjugate thatis 1/p+1/p* = 1. Let us
define the sequences spaces we shall work with : (see [3} 2]]).
£,(X) = the Banach space of absolutely p-summable sequences with the norm (1 < p < o)

(i) llpe= (g [BY |P> 1/,,.

£3(X) = the Banach space of weakly p-summable sequences with the norm (1 < p < )

o 1/p
I (xj)?:l lwp:=sup < ‘x* (xj)l’> .
j=1

x*EBx*
ZZ”" (X) the Banach space of mid p-summable sequences with the norm (1 < p < oo)
w oo 1/p
I (i) =y lmiapr="_sup (Z 2 [ () ’p) -
' (3 )a=1 €Bar ) \j

When p = o we have || (xj);o:] [loo=Il (xj);o:l [lweo=]| (xj);o:] ll mia.-= sup |1x]|. The relation-
ships between the various sequence spaces are given by [2]]

6p(X) S 69(X) S Ly (X),

with
” (xj)j:] HPSH (xj)j:] HW,IJSH (xj)j:1 Hmid,p-
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Recall that, for 1 < p < oo, we say that a continuous linear operator 7' : X — Y is absolutely
p-summing if
(T(xj))5=1 € £p(Y) whenever (x;)7-; € £;(Y).
The class of absolutely p-summing operator from X to ¥ will be represented by I1,(X;Y). An
equivalent formulation asserts that 7' is absolutely p-summing if there is a positive constant C
such that

T )T llp < ClGe)Tor lhwep
forall (x;)7_; € £, (X). The infimum of all C > 0 that satisfy the above inequality define a norm,

denoted by 7, (T) .
Let (#(X;Y), o(+)) be an operator ideal, we put

JUXY)={T e L(X;Y):T" € #(Y*;X")}.
For an operator T € .#¢(X;Y), we put a?(T) = a(T*). With these notations (79 (X;Y), a?(-))
is also a Banach operator ideal and is called the dual ideal of (.#(X;Y),o(-)) (see [[6l Section
4]).
Let us recall now the definition of strongly p-summing linear operators. An operator 7 €
Z(X,;Y) is strongly p-summing if there is a constant C such that

1T )y i) Tl < ClOe) T lp 107 T e
for all (x;)7_; € £p(X) and (y7)7_; € €. (Y™). The space Z(X:Y) of all strongly p-summing
linear operators from X into ¥ which is a Banach space with the norm d,(T") the infimum of all
C > 0 that satisfy the above inequality. According to [5[7] we obtain .@I‘f (X;Y) =T1,+(X;Y) and
N4(X:Y) = D (X:Y).

Our results are presented as follows. In first section [T} we recall important results and de-
finitions to be used later. In section 2] we introduce and investigate a new ideal of strongly
mid p-summing operators. We present a characterization given by a summability property. We
also prove the related dual result : an operator T € £ (X;Y) is strongly mid p-summing (T €
23 (X;Y)) if and only if its adjoint 7* is absolutely mid p*-summing (T* € Tl (¥ *; X*)). We
study Banach space X for which idy € H;,”id (Theorem|6), idy € @Z’id (Theorem Ei Dp(Lp:X) =
Z(£p;X) (Theorem . We also prove, X has the p-Dunford-Pettis property if and only if X*
has the p-Dunford-Pettis property.

2. STRONGLY MID SUMMING LINEAR OPERATORS

Botelho, Campos and Santos [2] introduced the concept of absolutely mid p-summing ope-
rators. For 1 < p < e, an operator T € .£(X;Y) is absolutely mid p-summing if

(T(xj))5=1 € E;,”id(Y) whenever (x;)7- € £p(X).

By HZ”"’ (X;Y), we denote the space of absolutely mid p-summing operators.

We introduce the concept of strongly mid p-summing linear operators as a characteriza-
tion of the conjugates of absolutely mid p*-summing linear operators. This idea seems to have
appeared for the first time in [S] and [7].

Definition 1 Let 1 < p < co. A mapping T € £ (X;Y) is strongly mid p-summing if there exist a
constant C > 0 such that
k k k
1T (), y 7=t < Cll )=t o (5 )= i pe (D
for any (xj)];:1 C X and (y;‘-)’;:I cY*. .@;”id(X;Y) denotes the space of all strm?gly mid p-
summing operators from X to Y. The least C for which (1)) holds will be written d;’,“d(T). From
the definition it is clear that 7,(X;Y) C @;,"id (X:;Y) and dZ’id(-) <dp(-).
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For T € Z(X;Y). The induced map @7 : X x Y* — K given by @7 (x,y*) = (T (x),y*) for all
x € X and y* € Y* is continuous bilinear. Using the abstract approach of [1] and Proposition 1.9
in [2]], we can see that the next proposition is immediate consequences of [1, Proposition 2.4].

Proposition 1 Let T € £ (X;Y), the following assertions are equivalent.
1. T egpd(x:y).
2. (r(xj,y7))721 € by whenever (x;)7_ € {,(X) and (y})7_, € ﬂgfd(Y*).

3. The induced map @r : {,,(X) x E'p”fd(Y*) — £} given by @((xj);?zl, 077 = (or (x),y7)) 72
is a well-define and continuous bilinear operator.
4. There exist a constant C > 0 such that

1(or (xj,y7)) 5=l < Cll Gy T 1) 521 i - @)
for any (xj)7_, € £,(X) and (y;)7_; € KZ’fd(Y*).
5. There exist a constant C > 0 such that
(o7 (vt lln < CllGep)5y 111073521 i - 3)
for any (xj)];:1 C X and (y}f)lj‘-:1 cry.
Moreover, dp’"id(T) = |l@r|| = inf{C: holds} = inf{C: holds}.

Theorem 2 (9;,”"1 (X;Y),d;,”id()) is a Banach operator ideal.

Proof. Using the abstract framework, notation and language [1]l, we find that a linear operator T
is strongly p-summing if and only if @7 is (EP(.)EZIJ"(.);ZI)-summing. Since 1/p+1/p*=1we
obtain

IS ATl < A Toille, ) 1 (A]) e lle,- ) = 1A} 5y lle, () (A7) Tt Hg;z;'d(Ky

. 1

Therefor, ZP(K)E’I’,’J‘J (K) = £,(K)¢p(K) < £;. In addition, all the sequence classes invol-
ved are linearly stable (see [2l Proposition 1.10]). So, form [1, Theorem 3.6] it follows that
(Ql’j”d,d;?ld(.)) is a Banach operators ideal. m In the next theorem, we will show that in fact
the absolutely mid p-summing linear operators is the adjoint of strongly mid p-summing linear
operators that will be useful throughout our section.

Theorem 3 Let1 <p<oo, T € ¥(X;Y). ThenT € QZ’id(X;Y) ifand only if T* € Hl’?fd(Y*;X*).
Moreover, dg’id(T) = ﬂziid(T*).

Proof. Assume that ' € Ql',”id(X;Y). For (x;)7_; € £p(X) and (y})7_, € E’;’Ed(Y*). We have
o . id . o
T (o)== ICT* ) x)) Tl < & (T )T llp1677) Tt mia e
by taking the supremum over the unit ballin £, (X)) we obtain || (T (y7))7_; | p* < Cl|(¥7) 721 lmia,p-
Therefore, T*: Y* — X* is absolutely mid p*-summing and dl’f‘id(T) > ﬂ:;”d(T*)‘ Conversely,

}let T* € H’I’,’fd(Y*;X*). For (xj)7.; € £p(X) and (y7)7_; € é;ﬂid (Y*). By Holder’s inequality we
ave

™

KT Ce) D < NEDTllp T Ol < 7 (TN N 07 T i

j=1

Therefore T is strongly mid p-summing and dl’,”id(T) = nl’,”id(T*). m As a consequence, we
obtain the following corollary which is a straightforward consequence of the preceding theorem
and Theorem 2.8 in [2].
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Corollary 4 Let 1 <p <o, T € Z(X;Y). If T* € Ip(Y*;X*) then T € I} (X;Y).

Recall that an operator ideal . (X;Y) is surjective if T € .# (X;Y) whenever ToQ € . (Xy;Y),
where O : Xy — X is the quotient map. As consequence, we obtain the following proposition
which is a straightforward consequence of Theorem 3] and [2| Proposition 2.8] and [6| Section
4].

Proposition 5 The operator ideal (@;f'id,d'p"id) is surjective.

The Dvoretzky—Rogers theorem (see [3]) states that the Banach space X is finite dimensional if,
and only if, idy is p-summing. Now we will give a results in this context.

We say that a Banach space X is a weak mid p-space (or p-Dunford-Pettis property see [4])
if Z;f”d (X) = £3(X) and it is a strong mid p-space if Z;,”’d (X) =£p(X).

The next result is a reformulation of [2, Theorem 2.7].

Theorem 6 The following are equivalent :

1) X is a strong mid p-space.

2) idy € T4 (X X).

3)ZL(XY)= Hl’;‘id (X:Y) for every Banach space Y .
4) LX) = H[’;’id (Y;X) for every Banach space Y .
5) X is a subspace of L,(1L) for some Borel measure |L.

Corollary 7 If X** is a strong mid p-space then X is a strong mid p-space.

Proof. Is a direct consequence of Theorem|§|and [2} Proposition 2.8]. m

Theorem 8 The following are equivalent :

1) X* is a strong mid p*-space.

2)idx € 7 (X:X).

3)ZL(XY)= _@Z“id (X;Y) for every Banach space Y .

4) L(YV;X) = @;,"id (Y;X) for every Banach space Y .

5) idx+ € TI (X*; X).

6) Z(X*;Y)= H;,”fd (X*;Y) for every Banach space Y .
7) LY X*) = H;’,’fd(Y;X*)for every Banach space Y .
8) X* is a subspace of Ly-(u) for some Borel measure .

Proof. By Theorem [3]and Theorem|[6] we have

&8 & 1

NS s

= =
3 & =

Theorem 9 [2| Theorem 2.6][4) Theorem 3.7] The following are equivalent :
1) X has the p-Dunford-Pettis property.

2) H"f”d(X;Y) =1I1,(X;Y) for every Banach space Y .

3) I (X:0,) =T1,(X:L,) = ZL(X:Ly).

4) Dpr (s X*) = L (Lp; X7).
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Theorem 10 The following are equivalent :

1) X* has the p-Dunford-Pettis property.

2) .,@1',’1"‘1 (Y:X) = 2, (Y;X) for every Banach spaceY .

3) H"f’d(X*;Y*) =1I1,(X*;Y*) for every Banach spaceY .
4T (X3 0p) =Ty (X*36p) = Z(X*31p).

5) Dy (LX) = Dy (3 X) = L (Lp3X).

6) Dy (U3 X) = L (Up; X).

Proof. follows from Theorem[3and Theorem[0] m

Corollary 11 X** has the p-Dunford-Pettis property if and only if X has the p-Dunford-Pettis
property.

Corollary 12 [4] Corollary 3.9] If X* has the p-Dunford-Pettis property, so does X.

Theorem 13 X* has the p-Dunford-Pettis property if and only if X has the p-Dunford-Pettis
property.
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