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ABSTRACT

In this paper we will discuss a discrete fractional order covid-19 model and give results for
existence and conditions to ensure the disappearance of the disease.
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1. INTRODUCTION

After the spread of the Corona pandemic, many mathematicians built models to try to analyze
the spread of this epidemic. Recently modeling several chemical and physical phenomena have
broadly been carried out using the theory of Fractional-order Difference Systems (FoDSs). In this
work, we will study the discret fractional model of one of the models of Covid 19 and the study
of existence and uniqueness, and then we will present conditions to ensure the disappearance of
the epidemic.

2. PRELIMINARIES

This section briefly introduces some basic definitions and preliminaries associated with dis-
crete fractional calculus. In the whole of the definitions below, the function f is defined on the
set of the form Na = {a,a+1,a+2, ...}, where a ∈ R.

Definition 1 [1] Let α > 0. Then, the αth−fractional sum, ∆−α
a , of a function f : Na → R is

defined by :

∆
−α
a f (t) :=

1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1) f (s), for t ∈ Na+α , (1)

where Γ(.) is the Euler’s gamma function.

Definition 2 [1] Let α > 0, α /∈N. Then, the αth−order Caputo fractional difference of a func-
tion f is defined by :

C
∆

α
a f (t) := ∆

−(n−α)
a ∆

n f (t) =
1

Γ(n−α)

t−(n−α)

∑
s=a

(t− s−1)(n−α−1)
∆

n f (s), t ∈ Na+n−α , (2)

where n = [α]+1.
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3. SYSTEM MODEL

Consider the model of COVID-19 suggested and studied in [2] as follow :

dS
dt = θ − αc(1−ψ)(1−υ)(E+I)S

N(t) −µS+σR
dE
dt =

αc(1−ψ)(1−υ)(E+I)S
N(t) − (µ +ω)E

dI
dt = ωE− (µ +δ +ρ + τ)I
dQ
dt = ρI− (µ +δ +φ)Q
dR
dt = φQ+ τI− (σ +µ)R

(3)

where Φ =
αc(1−ψ)(1−υ)(E+I)S

N(t) . The proposed model’s flowchart and parameters description are
well explained in (4).

Variable Description
S(t) Susceptible class
E(t) Exposed class
I(t) Infected
Q(t) Quarantine class
R(t) Recovered class

θ Recruitment rate into susceptible population
µ Natural mortality rate
δ COVID-19 death rate
ω Progression rate from exposed to infectious class
σ Rate of loss of immunity
τ Treatment rate for infectious individuals
φ Treatment rate for quarantine individuals
ψ Proportion of individuals that maintain social distancing
υ Usage of a face mask and hand sanitizer by aportion of the population
ρ Rate of recovery from infection

αC Effective transmission rate.

(4)

the αth−order Caputo fractional difference system associate to the system (3) is written as
follows :

C∆α
a S(t) = θ − αc(1−ψ)(1−υ)(E(t−1+α)+I(t−1+α))S(t−1+α)

N(t−1+α)
−µS(t−1+α)+σR(t−1+α),

C∆α
a E(t) = αc(1−ψ)(1−υ)(E(t−1+α)+I(t−1+α))S(t−1+α)

N(t−1+α)
− (µ +ω)E(t−1+α),

C∆α
a I(t) = ωE(t−1+α)− (µ +δ +ρ + τ)I(t−1+α),

C∆α
a Q(t) = ρI(t−1+α)− (µ +δ +φ)Q(t−1+α),

C∆α
a R(t) = φQ(t−1+α)+ τI(t−1+α)− (σ +µ)R(t−1+α),

t ∈Na+1−α ,

(5)
where 0 < α < 1.

4. EXISTENCE AND UNIQUENESS

Now, to show the existence and uniqueness we use fixed point theory and Picard Lindelöf
method. To proceed, we may rewrite the system described in (5) in the following classical form :{

C∆α
a X(t) = F(t−1+α,X(t−1+α)),

X(a) = X0,
(6)
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where t ∈ NTmax
a+1−α

,((Tmax−a−1+α) ∈ N) the vector X(t) = (S(t),E(t), I(t),Q(t),R(t))T and
the function F(t,X(t)) is defined as follows :

F1(t,S) = θ − αc(1−ψ)(1−υ)(E(t)+I(t))S(t)
N(t) −µS(t)+σR(t)

F2(t,E) =
αc(1−ψ)(1−υ)(E(t)+I(t))S(t)

N(t) − (µ +ω)E(t)
F3(t, I) = ωE(t)− (µ +δ +ρ + τ)I(t)
F4(t,Q) = ρI(t)− (µ +δ +φ)Q(t)
F5(t,R) = φQ(t)+ τI(t)− (σ +µ)R(t)

(7)

To do so we proceed in the following manner. Using initial conditions (X(a)) and fractional sum
operator (1), we transform the system (5) into the following sum equations :

S(t)−S(a) = ∆−α
a

(
θ − αc(1−ψ)(1−υ)(E(t−1+α)+I(t−1+α))S(t−1+α)

N(t−1+α)
−µS(t−1+α)+σR(t−1+α)

)
,

E(t)−E(a) = ∆−α
a

(
αc(1−ψ)(1−υ)(E(t−1+α)+I(t−1+α))S(t−1+α)

N(t−1+α)
− (µ +ω)E(t−1+α)

)
,

I(t)− I(a) = ∆−α
a (ωE(t−1+α)− (µ +δ +ρ + τ)I(t−1+α)) ,

Q(t)−Q(a) = ∆−α
a (ρI(t−1+α)− (µ +δ +φ)Q(t−1+α)) ,

R(t)−R(a) = ∆−α
a (φQ(t−1+α)+ τI(t−1+α)− (σ +µ)R(t−1+α)) ,

(8)
for t ∈ NTmax

a+1−α
. Using (7) and the definition of ∆−α

a in (8), we obtained the state variable in
terms of Fi(t,X(t)), where i = 1···6.

S(t) = S(a)+ 1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F1(s−1+α,S(s−1+α)),

E(t) = E(a)+ 1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F2(s−1+α,E(s−1+α)),

I(t) = I(a)+ 1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F3(s−1+α, I(s−1+α)),

Q(t) = Q(a)+ 1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F4(s−1+α,Q(s−1+α)),

R(t) = R(a)+ 1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F5(s−1+α,R(s−1+α)).

t ∈ NTmax
a+1−α

. (9)

The Picard iterations are given by the following equations :

Sn+1(t) = S(a)+ 1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F1(s−1+α,Sn(s−1+α))

En+1(t) = E(a)+ 1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F2(s−1+α,En(s−1+α))

In+1(t) = I(a)+ 1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F3(s−1+α, In(s−1+α))

Qn+1(t) = Q(a)+ 1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F4(s−1+α,Qn(s−1+α))

Rn+1(t) = R(a)+ 1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F5(s−1+α,Rn(s−1+α))

t ∈ NTmax
a+1−α

.

(10)
Corresponding to the form (9), and with the initial condition we have the following sum equa-
tion :

X(t) = X(a)+
1

Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F(s−1+α,X(s−1+α)). t ∈ Na+1−α . (11)

Lemma 1 The function F(t,X(t)) defined in (7) satisfies the Lipschitz condition given by

‖F(t,X(t)−F(t,X(t))‖ ≤ β ‖(X(t)−X(t))‖ , (12)
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where

β = max
{
‖αc(1−ψ)(1−υ)+µ‖ ,‖αc(1−ψ)(1−υ)− (µ +ω)‖ ,

‖(µ +δ +ρ + τ)‖ ,‖(µ +δ +φ)‖ ,‖(σ +µ)‖

}
. (13)

Proof. Summarizing that S1(t) and S2(t) are couple functions, we reach

‖F1(t,S1)−F1(t,S2)‖=
∥∥∥∥(αc(1−ψ)(1−υ)(E(t)+ I(t))

N(t)
+µ

)
(S1(t)−S2(t))

∥∥∥∥ . (14)

Taking into account

β1 = ‖αc(1−ψ)(1−υ)+µ‖ , (15)
one reaches

‖F1(t,S1)−F1(t,S2)‖ ≤ β1 ‖(S1(t)−S2(t))‖ . (16)
Continuing in the same way, one gets

‖F2(t,E)−F1(t,E∗)‖ ≤ β2 ‖(E(t)−E∗(t))‖ ,
‖F3(t, I)−F1(t, I∗)‖ ≤ β3 ‖(I(t)− I∗(t))‖ ,
‖F4(t,Q)−F1(t,Q∗)‖ ≤ β4 ‖(Q(t)−Q∗(t))‖ ,
‖F5(t,R)−F1(t,R∗)‖ ≤ β5 ‖(R(t)−R∗(t))‖ ,

(17)

where
β2 = ‖αc(1−ψ)(1−υ)− (µ +ω)‖ ,
β3 = ‖(µ +δ +ρ + τ)‖ ,
β4 = ‖(µ +δ +φ)‖ ,
β5 = ‖(σ +µ)‖ ,

(18)

From (16-17), we find that the kernels F1,F2,F3,F4 and F5 is satisfying the Lipschitz condition,
moreover if βi < 1, for i = 1,2,3,4,5 then the kernel Fi for i = 1,2,3,4,5 is contraction.

Theorem 2 Assuming we have (13), then there exist a unique solution to the system (5) if

β

∣∣∣(Tmax−a)(α)− (1−α)(α)
∣∣∣< 1. (19)

Proof. The solution to the system (6) is

X(t) = P(X(t)), (20)

where, P is the Picard operator defined by

P(X(t)) = X(a)+
1

Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)F(s−1+α,X(s−1+α)). (21)

Further, we have

‖P(X1(t)−P(X2(t))‖ =

∥∥∥∥ 1
Γ(α)

t−α

∑
s=a

(t− s−1)(α−1)(F(s−1+α,X1(s−1+α))

−F(s−1+α,X2(s−1+α)))‖ ,

≤
1

Γ(α)

t−α

∑
s=a

(t− s−1)(α−1) ‖(F(s−1+α,X1(s−1+α))

−F(s−1+α,X2(s−1+α)))‖ ,

≤
1

Γ(α)

(
t−α

∑
s=a

(t− s−1)(α−1)
)

max
s∈Nt−α

a

‖(F(s−1+α,X1(s−1+α))

−F(s−1+α,X2(s−1+α)))‖ ,
≤ (t−a)(α)−(1−α)(α)

Γ(α)
β ‖(X1(t)−X2(t))‖ .

(22)
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Since, (Tmax−a)(α)−(1−α)(α)

Γ(α)
β < 1, (t ≤ Tmax) then, the operator P is a contraction, hence the

system (6) has a unique solution.
For the non negative solution we need the following lemma

Lemma 3 Let α > 0, α /∈ N and f is defined on Na. Then :

f (t) = f (a)+
1

Γ(α)

t−α

∑
r=a+1−α

(t− r−1)(α−1) C∆α
a f (r), ∀t ∈ Na+1, (23)

Remark 1 From Lemma 3 we have

1. If C∆α
a f (t) ≥ 0 then f is non decreasing for all t ∈ Na.

2. If C∆α
a f (t) ≤ 0 then f is non increasing for all t ∈ Na.

Theorem 4 the solution of (5) is positive

Proof. to proof that solutions of the system (5) with non negative initial data will remain non
negative for all t ∈ Na, we use lemma ... . Since :

C∆α
a S
∣∣
S=0 = θ +σR≥ 0,

C∆α
a E
∣∣
E=0 =

αc(1−ψ)(1−υ)IS
N ≥ 0,

C∆α
a I
∣∣
I=0 = ωE ≥ 0,

C∆α
a Q
∣∣
Q=0 = ρI ≥ 0,

C∆α
a R
∣∣
R=0 = φQ+ τI ≥ 0.

(24)

Then we conclude that the solution X(t) = (S(t),E(t), I(t),Q(t),R(t))T of system (5) belongs to
R5
+.

5. STABILITY ANALYSIS OF DISEASE FREE EQUILIBRIUM (DFE)

To evaluate the equilibrium let
C∆α

a S(t) =C ∆α
a E(t) =C ∆α

a I(t) =C ∆α
a Q(t) =C ∆α

a R(t) = 0. System (5) become :
θ − αc(1−ψ)(1−υ)(E+I)S

N −µS+σR = 0
αc(1−ψ)(1−υ)(E+I)S

N − (µ +ω)E = 0
ωE− (µ +δ +ρ + τ)I = 0

ρI− (µ +δ +φ)Q = 0
φQ+ τI− (σ +µ)R = 0

(25)

the jacobian matrix is :

J =


−αc(1−ψ)(1−υ)(E+I)

N −µ −αc(1−ψ)(1−υ)S
N −αc(1−ψ)(1−υ)S

N 0 σ

αc(1−ψ)(1−υ)(E+I)
N

αc(1−ψ)(1−υ)S
N − (µ +ω)

αc(1−ψ)(1−υ)S
N 0 0

0 ω −(µ +δ +ρ + τ) 0 0
0 0 ρI −(µ +δ +φ) 0
0 0 τ φ −(σ +µ)


(26)
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The following results provide the local and global stability results of the system (5) around
the DFE. For which we get the DFE as follows :

e f = (S0,0,0,0,0) = (
θ

µ
,0,0,0,0). (27)

5.0.1. Local stability

Theorem 5 [3] Let α ∈ (0,1) and A is an n×n constant matrix. If λ ∈ Sα for all the eigenvalues
λ of A, then the trivial solution of ([?]) is asymptotically stable. In this case, the solutions of ([?])
decay towards zero algebraically (and not exponentially), more precisely

‖x(t)‖= O(t−α ) as t→ ∞,

for any solution x of ([?]).
Furthermore, if λ ∈ C\ cl(Sα ) for an eigenvalue λ of A, the zero solution of ([?]) is not

stable.

The respective Jacobian of above matrices at the DFE are evaluated as follows :

Je f =


−µ −b1 −b1 0 σ

0 b1−b2 b1 0 0
0 ω −b3 0 0
0 0 0 −b4 0
0 0 τ φ −b5

 , (28)

where b1 = αc(1−ψ)(1−υ),b2 = (µ +ω),b3 = (µ +δ +ρ +τ),b4 = (µ +δ +φ),b5 = (σ +
µ).

Theorem 6 The DFE of the system (5) is locally asymptotically stable when :

µ +δ +σ +φ < 2α , (29)

b1(
b3 +ω

b3
)< b2, (30)

b1 < b2 +b3, (31)

b2 +b3−b1 < 2α , (32)

Proof. Computations give the following characteristic polynomial :

− (λ +µ)(λ +b4)(λ +b5)
(

λ
2 +(b2−b1 +b3)λ +(b2b3−b1b3−ωb1)

)
, (33)

In the characteristic polynomial of Je f we have the eigenvalues :

λ1 = −µ,
λ2 = −b4,
λ3 = −b5,

λ4 =
1
2 (b1−b2−b3−ξ ) ,

λ5 =
1
2 (b1−b2−b3 +ξ ) ,

(34)
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where ξ =

√
(b2−b1−b3)

2 +4ωb1. According to assumptions (29) :

−2α < λ1 < 0,
−2α < λ2 < 0,
−2α < λ3 < 0.

(35)

According to assumptions (30) :

b1(
b3+ω

b3
)< b2,

4b1b3 +4ωb1 < 4b2b3,
2b1b3−2b2b3−2b1b2 +4ωb1 < 2b2b3−2b1b3−2b1b2,

(b2−b1−b3)
2 +4ωb1 < (b2 +b3−b1)

2 ,
ξ < b2 +b3−b1,

(36)

⇒
λ4 < λ5 < 0. (37)

According to assumptions (31)-(32) :

−2α < (b1−b2−b3)< λ4 < λ5, (38)

by theorem ... DFE of the system (5) is locally asymptotically stable.

5.0.2. Global stability

Theorem 7 [4] If there exists a positive definite and decrescent scalar function V (t,x) such that

C
∆

α
t0V (t,x(t))≤ 0, (2.34)

for all t0 ∈ Na, then the trivial solution of ([?]) is uniformly stable.

Theorem 8 If
(b2−b1)b3

b1ω
> 1 (39)

then, in the absence of COVID-19, that is, the COVID-19 free equilibrium (S0,0,0,0,0) is glo-
bally asymptotically stable.

Proof. Lyapunov function is commonly used to proof the Global Stability of the Disease Free
Equilibrium [5]. Consider the formed Lyapunov function of the type

L(t) = AE + I, (40)

withe
ω

b2−b1
< A <

b3

b1
. (41)

Let’s differentiate L with respect to time to have

C∆α
a L(t) = AC∆α

a E(t)+C ∆α
a I(t),

= A
(

b1
S
N (E + I)−b2E

)
+(ωE−b3I) ,

=
(

ω−Ab2 +A S
N b1

)
E +

(
−b3 +A S

N b1

)
I,

≤ (ω +Ab1−Ab2)E +(Ab1−b3) I,
≤ 0.

(42)
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6. CONCLUSIONS

In this chapter, a discrete fractional order covid model is studied and some results of local and
global stability are given by using an appropriate Lyapunov function to ensure the disappearance
of the disease in comfortable conditions.
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