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ABSTRACT

In this paper, we introduce and explore the geometric-weighted Hardy spaces with variable ex-
ponent on bounded Lipschitz domain D of Rn.

1. INTRODUCTION

The variable Lebesgue spaces is a well known generalization for the classical Lebesgue
spaces and it has become an interesting field for scientists in recent decades due to its wide uses
and applications in real world phenomena. The variable Lebesgue spaces Lp(·)(Ω) was initiated
first by Orlicz [8], then studied and investigated by many authors see for example [7, 2, 3, 4].

The classical Hardy space on Rn was introduced and developed by Stein and Weiss [15].
This kind of space was also extended to the variable setting. In particular, Nakai and Sawano
[12] introduced and investigated the Hardy space H p(·)(Rn) with variable exponent, where they
established the atomic decomposition of this space. As in the results established in [12], Liu [9]
extended the results obtained by Miyachi [11] from the real variable Hardy space on domains to
the Hardy spaces with variable exponents. More precesily, Liu [9] obtained the atomic decom-
position of the variable Hardy spaces on domains and as an application, he studied the geometric
Hardy spaces with variable exponent. On the other hand, the weighted variable Hardy spaces are
considered as an extension for the variable Hardy spaces. K-P. Ho [5] introduced and studied
the variable weighted Hardy spaces H p(·)

w (Rn), where he introduced a general class of weights
compared to the ordinary Mukenhoupt class of weights. More recently, O. Melkemi et al. [10]
extended the results obtained by K-P. Ho [5], where the authors introduced and investigated the
atomic characterization of the weighted variable Hardy spaces on general domains Ω of Rn.
For more information and results concerning the variable Hardy spaces we refer the reader to
[16, 14, 13, 6] and the references therein. Motivated by the recent works in [10] and [9], our
main goal is to investigate the geometric-weighted-variable Hardy spaces H p(·)

w,r (D) on Lipschitz

domain D of Rn. We recall that the spaces H p(·)
w,r (D) are defined by means restricting arbitrary ele-

ments of H p(·)
w (Rn) to a bounded domain D. By applying the atomic characterization of the space

H p(·)
w (D) obtained in [10] for a general domains of Rn, the reflection technique for Lipschitz do-

mains and borrowing some ideas from [1], we prove the following identity H p(·)
w (D) = H p(·)

w,r (D)
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(see Theorem 3 below). The rest of this paper is arranged as follows. In the next section, we give
some basic definitions and ingredients. In the last Section, we state and prove the main result
obtained in this article.

As usual, throughout this paper, C stands for a positive constant which may be different from
line to line, A ≲ B means that there exists a positive constant C such that A ≤ CB, the symbol
A ≈ B means A ≲ B and B ≲ A.

2. PRELIMINARIES

A measurable function p(·) : D → (0,∞) is called a variable exponent. For a variable ex-
ponent p(·), define

p− = ess infx∈Dp(x) and p+ = esssupx∈Dp(x),

and let us denote by P(D) the collection of all variable exponents such that 0 < p− ≤ p+ < ∞.

Let p(·) ∈P(D). The Lebesgue space with variable exponents Lp(·)(D) consists of all mea-
surable functions f : D→R such that

∫
D | f (x)|p(x)dx < ∞, equipped with the Luxemburg quasi-

norm

∥ f∥Lp(·)(D) = inf
{

λ > 0 :
∫
D

[
| f (x)|

λ

]p(x)
dx ≤ 1

}
. (2.1)

In the following lemma, we collect some useful properties of the variable exponent Lebesgue
spaces. For the proofs and more details about these spaces, we refer to [3].

Lemma 1 Let p(·) ∈ P(D) and f ,g ∈ Lp(·)(D).
(1) For λ ∈ C, we have ∥λ f∥Lp(·)(D) = |λ |∥ f∥Lp(·)(D).

(2) For any s ∈ (0,∞), we have ∥| f |s∥Lp(·)(D) = ∥ f∥s
Lsp(·)(D).

(3) ∥ f +g∥p
Lp(·)(D) ≤ ∥ f∥p

Lp(·)(D)+∥g∥p
Lp(·)(D) where p = min{p−,1}.

We recall that for any f ∈ L1
loc(D), the Hardy-Littlewood maximal operator M is defined for

all x ∈ D by setting,

M( f )(x) := sup
B∋x

1
|B|

∫
B
| f (y)|dy,

where the supremum is taken over all balls B of D containing x.

Next, we recall the definition and some properties of the weighted variable Lebesgue spaces.
Let w : D → (0,∞) be a locally integrable function. The weighted variable exponent Lebesgue
space Lp(·)

w (D) is defined as the space of all measurable functions f : D→ C such that

∥ f∥
Lp(·)

w (D) = ∥ f w∥Lp(·)(D) < ∞.

The weights used in this paper belongs to the following class.

Definition 1 Let p(·) : D → (0,∞) be a measurable function such that 0 < p− ≤ p+ < ∞ and
w :D→ (0,∞) be a Lebesgue measurable function. We denote by Wp(·)(D) the set of all Lebesgue
measurable functions w such that

(1) ∥χB∥L
p(·)/p

wp (D)
< ∞ and ∥χB∥

L
(

p(·)
p )′

w−p (D)
< ∞, for any ball B of D ;

(2) there exists k > 1 and s> 1 such that the Hardy-Littlewood maximal operator is bounded
on L(sp(·))′/k

w−k/s (D).
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For any w ∈Wp(·)(D), set

sw = inf{s ≥ 1 : M is bounded on L(sp(·))′
w−1/s (D)},

Sw = {s ≥ 1 : M is bounded on L(sp(·))′/k
w−k/s (D) for some k > 1}

and
ks

w = sup{k ≥ 1 : M is bounded on L(sp(·))′/k
w−k/s (Rn)}. (2.2)

The following theorem gives the Fefferman-Stein vector valued maximal inequalities on Lp(·)
w (D).

For the proof, we refer to [5].

Theorem 2 Let p(·) : D → (0,∞) be a measurable function with 0 < p− ≤ p+ < ∞ and q ∈
(1,∞). If w ∈Wp(·)(D), then, for any r > sw, we have∥∥∥∥∥∥

(
∑
i∈N

(M fi)q

)1/q
∥∥∥∥∥∥

Lrp(·)
w1/r (D)

≤C

∥∥∥∥∥∥
(

∑
i∈N

| fi|q
)1/q

∥∥∥∥∥∥
Lrp(·)

w1/r (D)

.

Let φ ∈ D(B(0n,1)) such that
∫
Rn φ(x)dx = 1. For any t ∈ (0,∞) and x ∈ D, we set φt(x) =

t−nφ(t−1x). For any f ∈ D ′(D), the radial maximal function M+
φ ,Ω( f ) is defined for any x ∈ D

by
M+

φ ,Ω( f )(x) := sup
t∈(0,dist(x,Dc))

|⟨ f ,φt(x−·)⟩|, (2.3)

where Dc denotes the complementary set of D in Rn, dist(x,Dc) := inf{|x− y| : y ∈ Dc} and
⟨·, ·⟩ denotes the duality between D ′(D) and D(D).

Now, we introduce weighted variable Hardy space on domains and we establish its atomic
and maximal function characterizations.

Definition 2 Let D be an open set of Rn and p(·) ∈ P(D). Then, the weighted variable Hardy
space H p(·)

w (D) is defined to be the set of all f ∈ D ′(D) such that M+
φ ,Ω( f ) ∈ Lp(·)

w (D), where

M+
φ ,Ω is as in (2.3), equipped with the quasi-norm

∥ f∥
H p(·)

w (D) = ∥M+
φ ,Ω( f )∥

Lp(·)
w (D).

Next, we give the definition of (p(·),r,w)-atoms in D.

Definition 3 Let D be an open set of Rn, p(·) ∈ P(D), w : D→ (0,∞), q ∈ (1,∞] and

dw = n(sw −1). (2.4)

1. A cube Q ⊂ Rn is called of type (a) if 4Q ⊂ D and Q̃ ⊂ Rn is called of type (b) if
2Q̃∩Dc =∅ and 4Q̃∩Dc ̸=∅.

2. A measurable function a on D is called a type (a) (p(·),q,w)D−atom if there exists a
cube Q of type (a) such that
(1) supp a ⊂ Q;

(2) ∥a∥Lq(D) ≤
|Q|1/q

∥χQ∥
Lp(·)

w (D)
;

(3) there exist s ≥ dw such that,
∫
Rn a(x)xα dx = 0 for all α ∈ Zn

+ with |α| ≤ s.
3. A measurable function b on D is called a type (b) (p(·),q,w)D−atom if there exists a

cube Q̃ of type (b) such that
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(1) supp b ⊂ Q̃ ;

(2) ∥b∥Lq(D) ≤
|Q̃|1/q

∥χQ̃∥Lp(·)
w (D)

;

Let p(·) ∈ P(D), {λi}i∈N be a sequence of numbers in C, {Qi}i∈N be a cube sequence of the
supports of type (a) (p(·),r,w)D− atoms, {κi}i∈N be a sequence of numbers in C, {Q̃i}i∈N be a
cube sequence of the supports of type (b) (p(·),r,w)D− atoms. Define

A ({λi}i∈N,{Qi}i∈N) :=
∥∥∥∥{∑

i∈N

[
|λi|χQi

∥χQi∥Lp(·)
w (D)

]θ} 1
θ

∥∥∥∥
Lp(·)

w (D)
,

and

B({κi}i∈N,{Q̃i}i∈N) :=
∥∥∥∥{∑

i∈N

[ |κi|χQ̃i

∥χQ̃i
∥

Lp(·)
w (D)

]θ} 1
θ

∥∥∥∥
Lp(·)

w (D)
,

3. MAIN RESULT

In this section, we present our main result. We start by introducing the geometric-weighted
Hardy space with variable exponent on a proper open subset D of Rn.

Definition 4 Let D⊂ Rn be a proper open subset and p(·) ∈ P(Rn). Denote by H p(·)
w (Rn) the

weighted variable Hardy spaces on Rn. Then, it is said that a distribution f ∈ D ′(D) belongs to
H p(·)

w,r (D), if f is the restrection to D of F ∈ H p(·)
w (Rn). Namely, we have

H p(·)
w,r (D) :=

{
f ∈ D ′(D) : there exists F ∈ H p(·)

w (Rn) : such that F|D ≡ f
}
.

The definition of (p(·),q,w)−atoms on Rn is given as follows

Definition 5 Let p(·) ∈ P(D), w : D→ (0,∞), q ∈ (1,∞] and

dw = n(sw −1).

A measurable function a on Rn is called (p(·),q,w)D−atom if there exists a cube Q such that
(1) supp a ⊂ Q;

(2) ∥a∥Lq(Rn) ≤
|Q|1/q

∥χQ∥
Lp(·)

w (Rn)

;

(3) there exist s ≥ dw such that,
∫
Rn a(x)xα dx = 0 for all α ∈ Zn

+ with |α| ≤ s.

Definition 6 For sequences of {λi}i∈N ⊂ C and cubes {Q j}i∈N, define that

A ′({λi}i∈N,{Qi}i∈N) :=
∥∥∥∥{∑

i∈N

[
|λi|χQi

∥χQi∥Lp(·)
w (D)

]θ} 1
θ

∥∥∥∥
Lp(·)/θ

wθ
(D)

,

where θ ∈ Sw.

The result of this section is given below

Theorem 3 Let D ⊂ Rn be a bounded Lipschitz domain, p(·) ∈ Clog(Rn) and w ∈ Wp(·)(Rn)

with n
1+n ≤ p− ≤ p+ ≤ 1. Then we have the following identity :

H p(·)
w (D) = H p(·)

w,r (D),

with equivalent quasi-norms.
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Proof of Theorem 3.
We first show that, for any f ∈ H p(·)

w,r (D) we have ∥ f∥
H p(·)

w (D) ≲ ∥ f∥
H p(·)

w,r (D). Let f ∈ H p(·)
w,r (D)

then by definition there exists F ∈ H p(·)
w (Rn) such that F|D ≡ f . According to [5, Theorem 5.3]

and (6), we infer that there exist a sequence {λQ}Q ⊂ C, a sequence {aQ}Q of (p(·),q)-atoms
and A ′({λQ}Q,{Q}Q)< ∞ such that F = ∑Q λQaQ in S ′(Rn) and

∥F∥
H p(·),q

atom,w
∼ A ′({λQ}Q,{Q}Q), (3.1)

where, those atoms aQ supported in cubes Q ∈ D with (4Q) ∩Dc = /0, are treated as type
(a)(p(·),q)D−atoms and we have

A ({λQ}Q1 ,{Q}Q1) = A ′({λQ}Q1 ,{Q}Q1)< ∞, (3.2)

where Q1 = {Q ⊂ D : (4Q)∩Dc = /0}.
We treat as type (b)(p(·),q)D-atoms and we have

B({λQ}Q2 ,{Q}Q2) = A ′({λQ}Q2 ,{Q}Q2)< ∞, (3.3)

where Q2 = {Q⊂D : (4Q)∩Dc ̸= /0 and (2Q)∩Dc = /0}. For those aQ atoms we can decom-
pose them into type (b)(p(·),∞)D-atoms via the Whitney decomposition. To do so, we consider
atoms in the decomposition of F that intersect ∂D. When we restrict the atom to D, we will lose
part of its support. Without lose of generality we consider an atom A fulfills ∥A∥Lq(Rn) ≤ 1, with
q ∈ (1,∞], and its supported on the cube

Q = {(x′,xn) : |x j| ≤ 1/2 when j = 1, · · · ,n−1,0 < xn ≤ α},

for some α ∈ (0,1). From the Whitney decomposition on D of Q with respect to ∂D, we
find that, the cube Q is decomposed into a family of sub-cubes {Qk

j} of distance 2−k from ∂D
and there are ck ∼ 2(n−1)k of them. We can observe that j varies from 1 to ck. From the Whitney
decomposition, it follows that each cube Qk

j is a type (b) cube and

A(x′,xn) =
∞

∑
k=1

ck

∑
j=1

χQk
j
A =

∞

∑
k=1

ck

∑
j=1

λQk
j
aQk

j
,

where, for j = 1, · · · ,ck and k ∈ N,

λQk
j

:= ∥χQk
j
A∥L∞(D)∥χQk

j
∥

Lp(·)
w (D)

and

aQk
j

:=
χQk

j
A

∥χQk
j
A∥L∞(D)∥χQk

j
∥

Lp(·)
w (D)

.

From the fact that aQk
j

is supported in type (b) cube Qk
j, we obtain

∥aQk
j
∥L∞(D) ≤

χQk
j
A

∥χQk
j
A∥L∞(D)∥χQk

j
∥

Lp(·)
w (D)

≤ 1
∥χQk

j
∥

Lp(·)
w (D)

.

Hence, each aQk
j

is a type (b)(p(·),∞)D−atom, Moreover, by combining the Hölder inequa-

lity, ∥A∥Lq(Rn) ≤ 1,∑∞
k=1 ∑

ck
j=1 |Q

k
j|= |Q| and ∥χQ∥Lp(·)

w (Rn)
≲ |Q|1/p+ , we find out that

ICMA2021-5



Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

B({λQk
j
} j,k,{Qk

j} j,k) = A ′({λQk
j
} j,k,{Qk

j} j,k)

≤

∥∥∥∥∥( ∞

∑
k=1

ck

∑
j=1

∥χQk
j
A∥L∞(D)

)( ∞

∑
k=1

ck

∑
j=1

χQk
j

) 1−θ

θ

∥∥∥∥∥
Lp(·)/θ

wθ
(Rn)

(3.4)

≤ ∥A∥L∞(Rn)∥χQ∥Lp(·)
w (Rn)

≲ |Q|1/p+ < ∞,

which means that the atomic decomposition converges in H p(·)
w (Rn). Furthermore, in view

of [10, Theorem 3.7], (3.2), (3.3) and (3.4), we get

∥ f∥H p(·)(D) ∼ ∥ f∥
H p(·),q

q,atom(D)

≤ A ({λQ}Q1,{Q}Q1)+B({λQ}Q2 ,{Q}Q2)+B({λQk
j
} j,k,{Qk

j} j,k)

∼ A ′({λQ}Q1,{Q}Q1)+A ′({λQ}Q2 ,{Q}Q2)+A ′({λQk
j
} j,k,{Qk

j} j,k)< ∞,

from this, (3.1), the definition of the variable geometric-weighted-Hardy space and [5, Theorem
5.3], we deduce that

∥ f∥
H p(·)

w (D) ≤ ∥F∥
H p(·),q

w,atom(Rn)
≲ ∥ f∥

H p(·)
r,w (D) < ∞,

which implies that f ∈ H p(·)(D).
Let us now turn out to show that, for f ∈ H p(·)

w (D) then we have, ∥ f∥
H p(·)

w,r (D) ≤ ∥ f∥
H p(·)

w (D).

Let f ∈ H p(·)
w (D), then by [10, Theorem 3.7] and Definition 5, we know that there exist two se-

quences λ j j∈N ⊂C and κ j j∈N ⊂C, a sequence a j j∈N of type (a)(p(·),q)Datoms and a sequence
b j j∈N of type (b)(p(·),q)Datoms such that

f = ∑
j∈N

λ ja j + ∑
j∈N

κ jb j in D ′(D), (3.5)

and

A ({λ j} j∈N,{Q j} j∈N)+B({κ j} j∈N,{Q̃ j} j∈N)< ∞.

The type (a)(p(·),q)Datoms a j in (3.5) are already (p(·),q)atoms and we have

A ({λ j} j∈N,{Q j} j∈N) = A ′({λ j} j∈N,{Q j} j∈N)< ∞.

While, we treat the (b)(p(·),q)Datoms b j in (3.5) in two different cases.
Case 1. If b j is of type (b)(p(·),q)D atoms as in (3.5) and is supported on a type (b) cube Q

with ℓ(Q)≤ ε for some ε sufficiently small ε > 0, then we find a cube Q̃ ⊂ ( ¯∂D)c which has the
same size of Q. Now, we set the extension (b j)∗ of function b j as follows :

(b j)∗(x) :=

{
b j(x) for x ∈ Q;
− 1

|Q|
∫

Q b j(y)dy for x ∈ Q̃,

from this, we infer that the function (b j)∗ is supported on Q∪ Q̃. As the distance between Q and
Q̃ to ∂D is comparable to ℓ(Q), we may find another cube denoted Q̂ such that Q∪ Q̃ is a subset
of Q̂ and |Q| ≤ |Q̂|≲ |Q|. From this and the Hölder inequality, we obtain
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∥(b j)∗∥Lq(Rn) ≤ ∥b j∥Lq(Rn)+
∥∥∥(− 1

|Q|

∫
Q

b j(y)dy
)

χQ̃

∥∥∥
Lq(Rn)

≤ ∥b j∥Lq(Rn)+ |Q̃||Q|−1
∫

Q
b j(y)dy

≤ ∥b j∥Lq(Rn)+ |Q̃|1/q|Q|−1+1/q′∥b j∥Lq(Rn) ≲
|Q̂|1/q

∥χQ̂∥Lp(·)
w (Rn)

and

∫
Rn
(b j)∗(x)dx =

∫
Q

b j(x)dx−
∫

Q̃

( 1
|Q|

∫
Q

b j(y)dy
)
χQ̃(x)dx

=
∫

Q
b j(x)dx−|Q̃||Q|−1

∫
Q

b j(x)dx = 0.

Thus, we find out

A ′({κQ}Q3 ,{Q}Q3) = B({κQ}Q3 ,{Q}Q3)< ∞, (3.6)

where Q3 := {Q ⊂ D : Q be a type (b) cube withℓ(Q)≤ ε}.
Case 2. If b j is a type (b)(p(·,q)Datom in (3.5) and is supported on a type (b) cube Q with

ℓ(Q) > ε , then from the fact that D ⊂ Rn is a bounded Lipschitz domain, we find out that there
exists a cube Q̃ ⊂ ( ¯∂D)c, such that ℓ(Q̃) = ℓ(Q) and dist(Q, Q̃)≲ ℓ(Q). Then we can find another
cube denoted Q̂, such that Q∪ Q̃ ⊂ Q̂ and ℓ(Q̂) = ℓ(Q). As in Case 1. we define the function

(b j)♯(x) :=

{
b j(x) for x ∈ Q;
− 1

|Q|
∫

Q b j(y)dy for x ∈ Q̃,

which implies that (b j)♯ is supported on Q∪ Q̃, such that

∥(b j)♯∥Lq(Rn) ≤ ∥b j∥Lq(Rn)+ |Q|−1∥(
∫

Q
b j(y)dy)χQ̃∥Lq(Rn) ≲

|Q|1/q

∥χQ̃∥Lp(·)
w (Rn)

and

∫
Rn
(b j)♯(x)dx =

∫
Q

b j(x)dx−
∫

Q̃

( 1
|Q|

∫
Q

b j(y)dy
)
χQ̃(x)dx

=
∫

Q
b j(x)dx−|Q̃||Q|−1

∫
Q

b j(x)dx = 0.

Consequently, we obtain

A ′({κQ}Q4 ,{Q}Q4) = B({κQ}Q4 ,{Q}Q4)< ∞, (3.7)

where Q4 := {Q ⊂D : Q be a type (b) cube withℓ(Q)> ε}. Thus By Definition of the space
H p(·)

w,r (D), (3.1), (3.6), (3.7) and [5, Theorem 5.3], we infer that

∥ f∥
H p(·)

w,r (D) ≤ ∥F∥
H p(·)

w (Rn)
∼ ∥F∥

H p(·),q
w,atom(Rn)

≤ A ′({κλ j
} j∈N,{Q j} j∈N)+A ′({κQ}Q3 ,{Q}Q3)+A ′({κQ}Q4 ,{Q}Q4)< ∞.
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In view of [10, Theorem 3.7], we obtain that

∥ f∥
H p(·)

w,r (D) ≤ ∥ f∥
H p(·),q

w,atom(D)
∼ ∥ f∥

H p(·)
w (D) < ∞,

which is the required result.
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