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ABSTRACT

This work is concerned with the problem of selecting an appropriate bandwidth, for the M-
estimator of the robust regression function from left truncated and right censored (LTRC) data,
under strong mixing condition. We provide an asymptotic expression for the mean squared error
(MSE) of this estimator. As a consequence, a bandwidth selector based on plug-in ideas is intro-
duced. A simulation study is investigated to examine the practical performance of the method.

1. INTRODUCTION

Let (X1,Y1) , ...,(XN ,YN) be a sequence of N strongly stationary mixing random variable,
identically distributed as (X ,Y ), taking value in the space Rd ×R. Our purpose is to study the
interaction between X and Y . One may choose, depending the situation under investigation, the
conditional mean E [Y |X = x] , which is known to be unstable if outliers are present in the data.
Robust regression is involved to overcome this problem, see Huber (1981). More precisely, let
ψx be a real function which is strictly monotone and integrable on R. For x ∈ Rd define the
ψx-regression function mψx (.) as a zero with respect to θ of

E [ψx (Y −θ) |X = x] = 0, (1)

In most works where the survival time Y is the variable of interest, referred here as the lifetime,
two different problems appear : the first one, if the time origin of the lifetime precedes the start
of the study. Only subjects that fail after the beginning of the study are being followed, otherwise
they are left truncated. On the other hand, some of these subjects may not be completely observed
due to different causes (death for a reason unrelated to the study, or be lost to follow-up), they are
then right censored. We are typically in a left truncation and right censoring (LTRC) situation.
This type of incomplete data is often encountered in medicine, economics, astronomy,...etc.
We focus in this work, with the problem of selecting a suitable bandwidth needed in kernel M-
estimation of the robust regression function, when the response variable Y , is not completely
observed, more precisely is subjected to both left truncation and right censorship mechanisms,
LTRC model.

2. MODEL AND ESTIMATOR

Let {(Yk, Tk, Wk) ,1≤ k ≤ N} be a sequence of random vectors from (Y, T, W ), where Y
denotes the lifetime under study with continuous distribution function (d.f) F. T and W are
the variables of the left truncation and right censoring time with continuous (d.f’s) L and G,
respectively. Let

Z = (Y ∧W ) and δ = 1{Y≤W},
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where (t ∧u) := min(t,u), and δ is the indicator of censoring status. In random LTRC model
one observe (Z, T, δ ) only if Z ≥ T . Set µ = P(T ≤ Z) , then we need to assume that µ > 0,
otherwise, nothing is observable. Consider the presence of a covariate X , and assume that X
admits (d.f) V (.) and a density v(.) . Then, denote by (Xi, Zi, Ti, δi) , i = 1,2, ...n; (n≤ N) a
stationary random sample from (X , Z, T, δ ) which one really observe (ie, Ti ≤ Zi). Denoted by
P and P the probability measure related to the N sample, and the actually observed n sample,
respectively. Also E and E the expectation operators related to P and P respectively.
In regression analysis, one expects to identify the relationship between X and Y via the robust
regression, this nonparametric model denoted m(x), is implicitly defined as solution of equation
(1) where its left hand side can be written as

E [ψx (Y −θ) |X = x] =
∫

ψx (y−θ) fX ,Y (x,y)dy
v(x)

,

with v(x)> 0. Set
Ψx (x,θ) := E [ψx (Y −θ) |X = x]v(x) ,

then m(.) can be viewed as a solution of Ψx (x,θ) = 0.
Combining the ideas of robustness with those of smoothed regression, we define a pseudo esti-
mator and a feasible estimator of Ψx (x,θ) respectively by

Ψ̃x (x,θ) :=
µ

nhd
n

n

∑
i=1

K
(

x−Xi

hn

)
δiψx (Zi−θ)

L(Zi)(1−G(Zi))
,

Ψ̂x (x,θ) :=
µn

nhd
n

n

∑
i=1

K
(

x−Xi

hn

)
δiψx (Zi−θ)

Ln (Zi)(1−Gn (Zi))
,

where K(.) is some kernel function on Rd and hn > 0 is a bandwidth tending to 0 as n→ ∞. Gn,
and Ln are the concomitant TJW, see Tsai et al (1987) and the Lynden-Bell, see Lynden (1971)
estimators, of the distribution functions G and L respectively. µn is a consistent estimate of µ.
Naturally a pseudo estimator and a feasible estimator of m(x) denoted m̃(x) and m̂(x) respecti-
vely, are a zero w.r.t θ of

Ψ̃x (x,θ) = 0, Ψ̂x (x,θ) = 0,

respectively. In the sequel, {(Xi, Zi, Ti, δi) , 1≤ i≤ n} is assumed to be stationary α-mixing
sequences of random vectors. Recall that a sequence {ζk,k ≥ 1} is said to be α-mixing (strongly
mixing) if the mixing coefficient

α (n)
de f
:= sup

k≥1
sup
{
|P(AB)−P(A)P(B)| ;A ∈ F∞

n+k,B ∈ Fk
1

}
,

converge to zero as n −→ ∞ where Fm
l = σ {ζl ,ζl+1, ...,ζm} denotes the σ−algèbra generated

by ζl ,ζl+1, ...,ζm with l ≤ m.

3. THEORETICAL OPTIMAL BANDWIDTH

A commonly used criterion for selecting a local optimal bandwidth, where hn is a function
of x, hn := hn (x), is the mean squared error (MSE) distance, defined by

MSE (m̃(x);h) := E
[
(m̃(x)−m(x))2

]
,
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Proposition 1 Under classical assumptions of the kernel robust regression estimation under α-
mixing data, we have

MSE(m̃(x)) = Avar+Abias2 +o
(

h4
n

)
+o(

1
nhd

n
)

where

Avar (m̃(x)) :=
1

nhd
n

Γx (x,m(x))(
∂Ψx (x,m(x))

∂θ

)2

∫
Rd

K2 (w)dw,

Abias(m̃(x)) :=
h2

n
2


− ∑

1≤i, j≤d

∂ 2Ψx (x,m(x))
∂xi∂x j

∫
Rd

wiw jK (w)dw

∂Ψx (x,m(x))
∂θ

 ,

and Γx (u,θ) := E
[

µψ2
x (Y1−θ)

L(Y1)G(Y1)
|X1 = u

]
v(u) .

Theorem 2 Under the same assumptions as Proposition 1 the optimal local bandwidth which
minimize the MSE is given by

hopt
MSE (x) =

1
n1/(d+4)


dΓx (x,m(x))

∫
Rd

K2 (w)dw(
∑

1≤i, j≤d

∂ 2Ψx (x,m(x))
∂xi∂x j

∫
Rd

wiw jK (w)dw

)2



1
d+4

. (2)

4. ITERATIVE PLUG-IN BANDWIDTH SELECTION

Based on the idea of "plugging-in" appropriate estimators of the unknown quantities, that ap-
pear in the formula of the AMSE - optimal bandwidth

(
hopt

AMSE

)
given in formula (2) is estimated

(with gaussian kernel, d = 1) by

ĥopt
Plug :=


Γ̂x (x, m̂(x))

2n
√

π

(
∂ 2Ψ̂x (x, m̂(x))

∂x2

)2


1/5

(3)

where

Γ̂x (x,θ) :=
µn

nhd
n

n

∑
i=1

K
(

x−Xi

hn

)
δiψ

2
x (Zi−θ)

L2
n (Zi)Gn

2
(Zi)

,

and
∂ 2Ψ̂x (x,θ)

∂x2 =
µn

nhn

n

∑
i=1

K′′
(

x−Xi

hn

)
δiψx (Zi−θ)

Ln (Zi)Gn (Zi)
,

K′′ (.) is the second derivative of the kernel K (.) .
The "Iterative" approach, proposed first by Gasser et al (1991) for the classical regression in the
complete case, adapted to the Robust regression context from LTRC data (a little different), is
based on the iteration algorithm.
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Iterative Plug-in Algorithm

step 1 Initialize h(0)n � n−1/5, since this is the bandwidth which is candidate for being the
optimal global bandwidth.

step 2 Iterate i=1,2,..., and estimate m̂(i)(x), using h(i−1)
n , for each fixed x.

step 3 Estimate Γ̂
(i)
x and (

∂ 2Ψ̂x

∂x2 )(i), using h(i−1)
n .

step 4 Find h(i)n using expression (3) with the estimators calculated in step 2 and 3.

step 5 Stop criterion :
∣∣∣h(i−1)

n −h(i)n

∣∣∣ < ε , and set ĥopt
Plug = h(i)n , where ε > 0 is a precision

needed.

5. CONCLUSIONS

The plug-in method builds on estimating the asymptotically optimal bandwidth from the
data. Since estimators for the residual variance and for an asymptotic expression for the bias are
plugged into the asymptotic formula, such selection rules are called "plug-in" estimators. The
iterative plug-in method is fast, flexible and present a good performance in simulation.
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