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ABSTRACT

In this work we use the method of lower and upper solutions to develop an iterative technique,
which is not necessarily monotone, and combined with a fixed point theorem to prove the exis-
tence of at least one solution of nonlinear fractional differential equations with nonlocal boundary
conditions of integral type.

1. INTRODUCTION

In this paper, we consider the following class of fractional differential equations

Dα u(t)+ f (t,u) = 0, t ∈ (0,1) , 1 < α ≤ 2, (1)

with a Newmann condition at the initial point and a nonlocal boundary condition of integral type
at the terminal point

u′(0) = 0, u(1) =
1∫

0

g(u(t))dt. (2)

Here Dα is the Caputo fractional derivative of order α ∈ (1,2], f : [0,1]×R→R, and g : R→R
satisfy conditions that will be specified later. We use the lower and upper solutions method to
develop an iterative method, which is not necessarily monotone (see [?],[?]) and combined with
the Schauder fixed theorem to prove the existence of least one solution for problem (1)− (2).

The rest of this paper is organized as follows. In Section 2 we recall some basic definitions
and results that are needed in the rest of the paper. In Section 3, we develop the iterative technique
in order to prove our main result concerning the existence of the solution of the problem (1)−(2).
Finally, we give an example to illustrate our main result.

2. PRELIMINARIES

In this section, we recall some basic definitions, notations and few results from fractional
calculus that we shall use in the remaider of the paper. Let I denote the compact real interval
[0,1] and let Cn(I), n∈N, is the space of continuous functions ω : I→R, such that ω(k) ∈C0(I)
k = 0,1,2, ...,n, equipped with the norm

‖ω‖Cn =
n

∑
k=0

max
0≤t≤1

∣∣∣ω(k)(t)
∣∣∣ .
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Definition 1 (see [6]) The Riemann-Liouville fractional primitive of order α > 0 of a function
f : (0,∞)→ R is given by

Iα f (t) =
1

Γ(α)

t∫
0

(t− s)α−1 f (s)ds, (3)

provided that the right-hand side is pointwise defined on (0,+∞), and where Γ is the gamma
function.

For instance, Iα exists for all α > 0, when f ∈ C (I). Notice, also, that when f ∈ C (I),
then Iα f ∈C (I) and moreover Iα f (0) = 0. The law of composition Iα Iβ = Iα+β holds for all
α,β > 0.

Definition 2 (see [6]) The Caputo fractional derivative of order α > 0 of a continuous function
f : (0,∞)→ R is given by

Dα f (t) = In−α f (n)(t) =
1

Γ(n−α)

t∫
0

f (n)(τ)

(t− τ)α−n+1 dτ, (4)

where n = [α]+1 and [α] is the integer part of α , provided that the right-hand side is pointwise
defined on (0,+∞).

Notice that Dα c = 0, where c is a real constant.

Remark 1 It is well known , [6, Lemma 2.22, page 96], that for α > 0

Iα Dα u(t) = u(t)+ c0 + c1t + ...+ cn−1tn−1, for all t ∈ I,

where n = [α]+1, and c0,c1, ...,cn−1 are real constants.

Lemma 1 Let α > 0. Then the differential equation

Dα u(t) = 0

has solutions u(t) = c0 + c1t + ...+ cn−1tn−1, t ∈ I, c0,c1, ...,cn−1 are real constants and n =
[α]+1.

Lemma 2 Let α ∈ (1,2) . Then the homogeneous problem{
Dα u(t) = 0, t ∈ I

u′(0) = 0, u(1) = 0

has only the trivial solution u(t) = 0 for all t ∈ I.

Lemma 3 Let f ∈C2(0,1)∩C(I). Then for any α ∈ (1,2) Dα f exists and is continuous on I.

The following results play an important role in the proof of our main result.

Theorem 4 [2, Corollary 2.1 page 3] Let f ∈C2(0,1) attains its minimum over the interval I at
the point t0 ∈ (0,1) and f ′(0)≤ 0. Then Dα f (t0)≥ 0 for any α ∈ (1,2) .

We shall use the following notation. For U,V ∈ C2(I) U ≤ V means U (t) ≤ V (t) for all
t ∈ I. Also, [U,V ] := {v ∈C2(I); U ≤ v≤V}.
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3. MAIN RESULT

In this section, we shall apply the lower and upper solutions method to develop an iterative
technique to prove the existence of solutions to problem (1)− (2).

Definition 3 We call a function u a lower solution for problem (1)− (2), if u ∈C2(I) and
Dα u(t)+ f (t,u(t))≥ 0, t ∈ (0,1)

u′(0) = 0, u(1)≤
1∫
0

g(u(t))dt.

Definition 4 We call a function u an upper solution for problem (1)− (2), if u ∈C2(I) and
Dα u(t)+ f (t,u(t))≤ 0, t ∈ (0,1)

u′(0) = 0, u(1)≥
1∫
0

g(u(t))dt.

Definition 5 A solution of (1)− (2) is a function u ∈C2(I) that is both a lower solution and an
upper solution of the problem.

Define a truncation operator τ : C2(I)→ [u,u] by

τ (y) = max{u,min(y,u)}.

Then τ (y) = u if y≤ u, τ (y) = y if y ∈ [u,u] and τ (y) = u if y≥ u. Moreover τ is a continuous
and bounded operator. In fact, we have

‖τ (u)‖0 ≤max(‖u‖0 ,‖u‖0) .

We now provide sufficient conditions on the nonlinearities f , g that will allow us to investigate
problem (1)− (2) .
(H1) f : I×R→ R is continuous and satisfies ( f (t,v1)− f (t,v2))(v1− v2) > 0, for all t ∈ I,
v1 > v2.
(H2) g : R→ R is continuous and nondecreasing.

Theorem 5 Assume that Problem (1)−(2) has a lower solution u, an upper solution u such that
u(t)≤ u(t), for all t ∈ I, and (H1), (H2) hold. Then Problem (1)− (2) has at least one solution
u∗ ∈C[I] such that u(t)≤ u∗(t)≤ u(t), t ∈ I.

Proof. The proof will be given in several steps.
Step1 : Modification of the problem. Let φ : I× [u,u]→R and ψ : [u,u]→R be defined, respec-
tively, by

φ (t,u) = f (t,τ (u)) , ψ (u) = g(τ (u)) .

It is clear that φ , ψ are continuous and bounded. Moreover φ satisfies (H1) and ψ satisfy (H2).

We consider the following modified boundary value problem
Dα u(t)+φ(t,u(t)) = 0, t ∈ (0,1) ,1 < α ≤ 2

u′(0) = 0, u(1) =
1∫
0

ψ (u(t))dt . (5)

We will show that the modified problem (5) has at least one solution u∗ ∈ [u,u] . It follows that
τ (u∗) = u∗ so that φ (t,u∗) = f (t,u∗) , ψ (u∗) = g(u∗). This implies that u∗ is a solution of our
original problem (1)− (2) .
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Step2. Let b ∈ R. Consider the auxiliary problem{
Dα u(t)+φ(t,u(t)) = 0, t ∈ (0,1) ,1 < α ≤ 2

u′(0) = 0, u(1) = b . (6)

Claim. If (H1) is satisfied then (6) has a unique solution.
Step3. We develop an iterative method to show that the modified problem has at least one solu-
tion. Define a sequence (uk)k∈N in the following way. Let u0 = u and for k ≥ 1

Dα uk(t)+φ(t,uk(t)) = 0, t ∈ (0,1) ,1 < α ≤ 2

u′k(0) = 0, uk(1) =
1∫
0

ψ (uk−1(t))dt . (7)

Notice that u′k(0) and uk(1) do not depend on the unknown function uk. We see that problem
(7) is similar to the previous auxiliary problem (6) . Therefore, for each k ∈ N, (7) has a unique
solution uk ∈Ω. It follows that (7) is equivalent to

uk(t) =
∫ 1

0
G(t,s)φ(s,uk(s))ds+

1∫
0

ψ (uk−1(t))dt, for all t ∈ I.

where G(t,s) is Green’s function corresponding to the linear homogeneous problem. This func-
tion exists because the homogeneous problem has only the trivial solution. It is given by

G(t,s) =
1

Γ(α)

 (1− s)α−1 , 0≤ t < s≤ 1

(1− s)α−1− (t− s)α−1 , 0≤ s < t ≤ 1
.

Take limit as k→ ∞, using the continuity of φ and ψ, , we obtain

u∗(t) =
∫ 1

0
G(t,s)φ(s,u∗(s))ds+

1∫
0

ψ (u∗(t))dt, for all t ∈ I.

Therefore 
Dα u∗(t)+φ(t,u∗(t)) = 0, t ∈ (0,1) ,1 < α ≤ 2

u∗
′
(0) = 0, u∗(1) =

1∫
0

ψ (u∗(t))dt . (8)

Step 4. To complete the proof of our main result we need to prove that u ≤ u∗ ≤ u, i.e. for all
t ∈ I

u(t)≤ u∗ (t)≤ u(t) .

We deduce that for all t ∈ I

φ(t,u∗(t)) = f (t,u∗(t)), and ψ (u∗(t)) = g(u∗(t)) .

Consequently, 
Dα u∗(t)+ f (t,u∗(t)) = 0, t ∈ (0,1) ,1 < α ≤ 2

u′∗(0) = 0, u∗(1) =
1∫
0

g(u∗(t))dt .

Finally, we see that u∗ is the desired solution to our original problem. This completes the proof
of our main result.
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4. EXAMPLE

We consider the following boundary value problem
D

3
2 u(t)+ e−u(t)−1 = 0, t ∈ (0,1)

u′(0) = 0, u(1) =
1∫
0

(
1− e−u(t)

)
dt.

(9)

We have α = 3/2, f (t,u) = e−u−1, and g(u) = 1− e−u.
We see that u(t) = 0 is a lower solution for problem (9) and u(t) = 1 is an upper solution

for problem (9). Applying Theorem 5, we see that the problem (9) has at least one solution
u∗ ∈ C[I] with 0 ≤ u∗(t) ≤ 1, for all t ∈ I. Notice that we have obtained the existence of a
nonegative solution.
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