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ABSTRACT

In this paper we use the martingale method for analysing a non-Markovian multiserver queue
with n identical servers and losses. The orbite hasem waiting space and where customers that
arrive when all servers are busy and the waiting space occupied are dropped and lost. Time
intervals between possible retrials are assumed to have arbitrary distribution. Using the Doob-
Meyer semimartingale decomposition, we provide an analysis of the general problem when the
arrival and departure processes are quite general point processes and then solve it for particular
special case when the arrival, departure and retrials processes are Markovian and the case when
these processes are nonhomogeneous Poisson processes.

1. INTRODUCTION

Martingales are a quiet general class of stochastic processes for which the properties are
based on those of the conditional mathematical expectation. The interpretation of this stochastic
process is somewhat interesting in connection with Game Theory. Indeed a martingale’s value
can change ; however, its expectation remains constant in time. More important, the expectation
of a martingale is unaffected by optional sampling. Martingales have been initially used in finan-
cial modeling, but it is surprising that such a powerful toolof probability theory has only been
slowly taken up in queueing theory.
In the present paper we show how such an approach can be adapted to a non-Markovian multi-
server retrial queueing system with losses. Such a queue canbe used to model a switching center
that allows a maximum of k simultaneous.

2. DESCRIPTION OF THE MODEL

Let us consider a multiserver queueing system withn servers having the following structure.
• Let A(t) be the number of customer arrivals to the system in time interval [0, t], R(t) be

the number of retrials andD(t) be the number of customer departures in[0, t].
• A(t), R(t) andD(t) are point processes having strictly stationary and ergodicincrements.
• There aren servers, and an arriving customer occupies one of free servers.
• The orbite hasm waiting space.
• If upon arrival servers are busy, but the secondary queue, orbit, having at least one space

free, then the customer occupies the orbit and retries more and more to occupy a server.
• A customer, who upon arrival finds all servers busy and the orbit occupied leave the system

forever.
• Let Q1(t) denotes the number of customers in the queue at timet, which coincides with

the number of busy servers att, Q2(t) denotes the number of customers in orbite at timet
andQ3(t) is the cumulated number of losses up to timet.
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• Customers are served by one of then idle servers ; the service times are mutually inde-
pendent random variables, independent of the arrival process.

• All point processes considered in this paper are assumed to be right-continuous having
left-side limits.

• The number of customers in the systems is always bounded

3. MARTINGALE REPRESENTATION

We can obtain a martingale representation for the queue-length process by using the Doob-
Meyer semi-martingale decomposition and a technique due toAbramov [1]. We have the follo-
wing basic representation :

Q1(t)+Q2(t)+Q3(t) = A(t)−D(t), t ≥ 0, (1)

where the departure processD(t) is defined with the help of the point processesDi(t), i = 1, ...,n
as follows :

D(t) =
∫ t

0

n

∑
i=1

I{Q1(s
−)≥ i}dDi(s), t ≥ 0, (2)

whereI{A} is the indicator function of the eventA.
Taking into account that the processA(t) andDi(t), i = 1,2, ...,n are semimartingales adapted to
ℑn. DenotingÂ(t) andD̂(t) the compensators of the processesA(t) andD(t) respectively. From
Doob-Meyer decomposition theorem [e.g. Liptser and Shiryayev [5]

A(t) = Â(t)+MA(t), (3)

and
D(t) = D̂(t)+MD(t), (4)

whereMA(t) andMD(t) are local square integrable martingales. The compensatorsÂ(t) andD̂(t)
have the integral representation

Â(t) =
∫ t

0
X(s)ds, t ≥ 0, (5)

and

D̂(t) =
∫ t

0
Q1(s)Y (s)ds, t ≥ 0, (6)

whereX = {X(t) : t ≥ 0} andY = {Y (t) : t ≥ 0} are adapted to the filtrationℑ and are called the
stochastic intensity of the counting processesA andD respectively.
By virtue of (3) and (4), equation (1) can be rewritten in the form of Doob-Meyer semimartingale
decomposition as follows :

Q1(t)+Q2(t)+Q3(t) = Â(t)− D̂(t)+MA(t)−MB(t). (7)

Define the normalized processesqi(t)= 1
t Qi(t), i= 1,2,3,mA(t)=

1
t MA(t) andmB(t)= 1

t MB(t).
Let us write the semimartingale decomposition for the queue-length process, from (7) we have :

q1(t)+q2(t)+q3(t) =
1
t

Â(t)−
1
t

D̂(t)+mA(t)−mB(t). (8)

Therefore

q1(t)+q2(t)+q3(t) =
1
t

∫ t

0
X(s)ds−

1
t

∫ t

0
Q1(s)Y (s)ds+mA(t)−mB(t). (9)
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4. ANALYSIS OF THE LIMITING QUEUE-LENGTH DISTRIBUTIONS

In this section we derive equations for the following limits:

lim
t→∞

1
t

E
∫ t

0
I{Q1(s

−) = i,Q2(s
−) = j}dA(s), i = 1,2, ...,n, j = 0,1...m, (10)

based on the Doob-Meyer semimartingale decomposition for the indicators of the queue-length
process.
Let us denote

Ii, j(t) = I{Q1(t) = i,Q2(t) = j}, i = 0,1...n, j = 0,1...m. (11)

Taking into consideration thatIi, j(t) = 0 if at least one of the indexesi or j is negative. Thus, we
have the following theorem.

Theorem 1 Given three independent counting processes A(t), Di(t) and R j(t) having strictly
stationary and ergodic increments, the limiting stationary frequencies of the queue-length pro-
cesses Q1(t) and Q2(t) are given by :

For i= 0,1,...,n-1, j = 0,1,...,m-1

lim
t→∞

1
t

E

t∫

0

Ii−1, j(s
−)dA(s)+(i+1) lim

t→∞

1
t

t∫

0

Ii+1, j(s
−)dD(s)

+( j+1) lim
t→∞

1
t

E

t∫

0

Ii−1, j+1(s
−)dR(s)

= lim
t→∞

1
t

E

t∫

0

Ii, j(s
−)dA(s)

+i lim
t→∞

1
t

t∫

0

Ii, j(s
−)dD(s)+ j lim

t→∞

1
t

E

t∫

0

Ii, j(s
−)dR(s) (12)

For i= 0,1,...,n-1, j=m

lim
t→∞

1
t

E

t∫

0

Ii−1,m(s
−)dA(s)+(i+1) lim

t→∞

1
t

t∫

0

Ii+1,m(s
−)dD(s)

= lim
t→∞

1
t

E

t∫

0

Ii,m(s
−)dA(s)+ i lim

t→∞

1
t

t∫

0

Ii,m(s
−)dD(s)+m lim

t→∞

1
t

E

t∫

0

Ii,m(s
−)dR(s) (13)

For i=n, j=0,1,...,m-1

lim
t→∞

1
t

E

t∫

0

In−1, j(s
−)dA(s)+ lim

t→∞

1
t

E

t∫

0

In, j−1(s
−)dA(s)

+( j+1) lim
t→∞

1
t

E

t∫

0

In−1, j+1(s
−)dR(s)

= lim
t→∞

1
t

E

t∫

0

In, j(s
−)dA(s)+n lim

t→∞

1
t

t∫

0

In, jdD(s) (14)

ICMA2021-3



Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

For i=n, j=m

lim
t→∞

1
t

E

t∫

0

In−1,m(s
−)dA(s)+ lim

t→∞

1
t

E

t∫

0

In,m−1(s
−)dA(s)

= n lim
t→∞

1
t

t∫

0

In,m(s
−)dD(s) (15)

5. SPECIAL CASES

In the following, we will give two special cases. Denote

Pi, j(t) = P{Q1(t) = i, Q2(t) = j}, i = 0,1, ...,n, j = 0,1, ...,m−1, (16)

Pi, j = limt→∞P{Q1(t) = i, Q2(t) = j}, i = 0,1, ...,n j = 0,1, ...,m−1. (17)

Corollary 2 Assume that the processes A(t), Di(t) and R j(t) are Poisson processes with rates
λ , µ and θ respectively, then we have the following system of equations,

For i = 0, j = 0,1, ...,m−1

λP0, j = µP1, j − jθP0, j. (18)

For i = 1,2, ...,n−1, j = 0,1, ...,m−1

(λ + iµ + jθ )Pi, j = λPi−1, j +(i+1)µPi+1, j +( j+1)θPi−1, j+1. (19)

For i = 1,2, ...,n−1, j = m

(λ + iµ +mθ )Pi,m = λPi−1,m +(i+1)µPi+1,m. (20)

For i = n, j = 0,1, ...,m−1

(λ +nµ)Pn, j = λPn−1, j +λPn, j−1+( j+1)θPn−1, j+1. (21)

For i = n, j = m
nµPn,m = λPn−1,m +λPn,m−1. (22)

Corollary 3 Assume that the processes A(t), Di(t), R j(t) are non homogeneous Poisson pro-
cesses with rae λ (t), µ(t) and θ (t) respectively, then we have the following system of equations,
For i = 0,1, ...,n−1, j = 0,1, ...,m,

limt→∞
1
t

∫ t

0
[Pi, j(s)−Pi−1, j(s)]λ (s)ds =

−ilimt→∞
1
t

∫ t

0
Pi, j(s)µ(s)ds− jlimt→∞

1
t

∫ t

0
Pi, j(s)θ (s)ds

+(i+1)limt→∞
1
t

∫ t

0
Pi+1, j(s)µ(s)ds.

+( j+1)limt→∞
1
t

∫ t

0
Pi−1, j+1(s)θ (s)ds. (23)

For i = n, j = 0,1, ...,m−1,

limt→∞
1
t

∫ t

0
[Pn, j(s)−Pn−1, j(s)−Pn, j−1(s)]λ (s)ds =
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−nlimt→∞
1
t

∫ t

0
Pn, j(s)µ(s)ds− ( j+1)limt→∞

1
t

∫ t

0
Pn−1, j+1(s)θ (s)ds (24)

For i = n, j = m,

limt→∞
1
t

∫ t

0
[Pn−1,m(s)−Pn,m−1(s)]λ (s)ds =

nlimt→∞
1
t

∫ t

0
Pn,m(s)µ(s)ds. (25)

6. CONCLUSION

In this paper, an analysis of non-Markovian multiserver retrial queueing system with losses
having m space in orbite is provided with the aid of theory of martingales. The system of equa-
tions for this system is obtained, which will allow us to derive analytical results allowing us to
provide a performance analysis.
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