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ABSTRACT

This work aims to investigate a delay hematopoiesis model where the delay depends on both the
time and the current density of mature blood cells. Based on the Banach contraction principle,
the Schauder’s fixed point theorem and some properties of a Green’s function, we establish se-
veral interesting existence and uniqueness results of positive periodic solutions for the proposed
model. The derived results are new and generalize some previous studies.

1. INTRODUCTION

Consider the following delay hematopoiesis model :

x′ (t) =−a(t)x(t)+ p(t)
x(t− τ)

1+ x(t− τ)
−H (t,x(t),x(t− τ)) , (1)

where x(t) is the density of mature cells in blood circulation at time t, a(t) is the rate of lost
cells from the circulation, p(t) is the production rate, H is the harvesting function and the delay
τ describes the duration of the proliferative phase.

A lot of investigations have revealed that the time and state dependent delays are more rea-
listic than other types of lags to describe real phenomena especially in life sciences . Actually, in
the production of blood cells, some growth factors and hormones that control the division of the
hematopoietic stem cells, depend on time and the density of mature cells.

To incorporate this biological information, we need to revisit the previous model as follows :

x′ (t) =−a(t)x(t)+ p(t)
x(t− τ (t,x(t)))

1+ x(t− τ (t,x(t)))
−H (t,x(t),x(t− τ (t,x(t)))) . (2)

In this work, we assume that the delay in equation (2) takes the form τ (t,x(t)) = t−x(t) . Under
this assumption, equation (2) becomes the following iterative differential equation :

x′ (t) =−a(t)x(t)+ p(t)
x[2] (t)

1+ x[2] (t)
−H

(
t,x(t),x[2](t)

)
, (3)

where x[2] (t) = x(x(t)) , a ∈ C (R,(0,∞)) , p ∈ C (R, [0,∞)) and H ∈ C
(
[0,ω]×R2,(0,∞)

)
.

2. PRELIMINARIES

We set the following assumptions :

a(t +ω) = a(t) , p(t +ω) = p(t) , H (t +ω,x,y) = H (t,x,y) , for all t,x,y ∈ R, (4)
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and
|H (t,x1,y1)−H (t,x2,y2)| ≤ k1 |x1− x2|+ k2 |y1− y2| , k1,k2 > 0. (5)

For proving the existence of at least one positive periodic solution of (3), we will convert this
equation into an integral one before employing the Schauder’s fixed point theorem.

For L,M > 0, let

K= {x ∈ X, 0≤ x(t)≤M, |x(t2)− x(t1)| ≤ L |t2− t1| , ∀t1, t2 ∈ [0,ω]} ,

a convex bounded and closed subset of the Banach space (X,‖.‖) where

X= {x ∈ C (R,R), x(t +ω) = x(t)} ,

and
‖x‖= sup

t∈R
|x(t)|= sup

t∈[0,ω]
|x(t)| .

Furthermore, we assume that

ωβ (H0 +‖p‖+(k1 + k2 (1+L))M)≤M, (6)

where H0 = supt∈[0,ω] H (t,0,0) and

β (H0 +‖p‖+(k1 + k2 (1+L))M)(2+ω ‖a‖)≤ L. (7)

We begin our study by the following result which ensures the conversion of our problem into an
equivalent integral equation :

Lemma 1 If the condition (4) holds, then x ∈K is a solution of (3) if and only if x is a solution
of the following integral equation :

x(t) =
∫ t+ω

t

[
p(s)

x[2](s)
1+ x[2](s)

−H
(

s,x(s),x[2](s)
)]

G(t,s)ds, (8)

where

G(t,s) =
e

∫ s

t
a(v)dv

e

∫
ω

0
a(v)dv

−1

. (9)

Remark 1 Let
e−

∫
ω

0 a(v)dv

e
∫

ω

0 a(v)dv−1
= α and

e
∫

ω

0 a(v)dv

e
∫

ω

0 a(v)dv−1
= β ,

then

G(t +ω,s+ω) = G(t,s), (10)
0 < α ≤ G(t,s)≤ β , (11)

and ∫ t1+w

t1
|G(t2,s)−G(t1,s)|ds≤ βw‖a‖|t2− t1| . (12)
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3. MAIN RESULTS

3.1. Existence

Now, to apply Schauder’s fixed point theorem, we need to construct an operator A : K→ X
as follows :

(A ϕ)(t) =
∫ t+ω

t

[
p(s)

ϕ [2](s)
1+ϕ [2](s)

−H
(

s,ϕ(s),ϕ [2](s)
)]

G(t,s)ds. (13)

From Lemma 1, fixed points of operator A are solutions of equation (3) and vice versa.

Remark 2 For all t ∈ [0,ω] and ϕ ∈K we have

(A ϕ)(t +ω) = (A ϕ)(t) ,

so A is well defined.

Lemma 2 If condition (5) holds, then operator A is continuous.

Proof. Let ϕ,θ ∈K, we have

|(A ϕ)(t)− (A θ)(t)| ≤
∫ t+ω

t
G(t,s) p(s)

∣∣∣∣∣ ϕ [2](s)
1+ϕ [2](s)

− θ [2](s)
1+θ [2](s)

∣∣∣∣∣ds

+
∫ t+ω

t
G(t,s)

∣∣∣H (s,ϕ(s),ϕ [2](s)
)
−H

(
s,θ(s),θ [2](s)

)∣∣∣ds.

By using (5), (11) and [Lemma 2.1, [12]], we obtain

|(A ϕ)(t)− (A θ)(t)| ≤ βω ((‖p‖+ k2)(1+L)+ k1)‖ϕ−θ‖ .

Consequently, A is continuous.

Lemma 3 Let conditions (5)-(7) hold and suppose that

p(t)
ϕ [2](t)

1+ϕ [2](t)
−H

(
s,ϕ(t),ϕ [2](t)

)
≥ 0, ∀t ∈ [0,ω] . (14)

Then
(A )(K)⊂K.

Proof.
Step 1 : If ϕ ∈K, then

|(A ϕ)(t)|=
∫ t+ω

t

[
p(s)

ϕ [2](s)
1+ϕ [2](s)

−H
(

s,ϕ(s),ϕ [2](s)
)]

G(t,s)ds

≤
∫ t+ω

t

[
p(s)

ϕ [2](s)
1+ϕ [2](s)

]
G(t,s)ds

+
∫ t+ω

t

[
H
(

s,ϕ(s),ϕ [2](s)
)]

G(t,s)ds

≤ ωβ (H0 +‖p‖+(k1 + k2 (1+L))M) .
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From (6), we obtain
(A ϕ)(t)≤M,

and from (14) we get
0≤ (A ϕ)(t) .

Then
0≤ (A ϕ)(t)≤M, ∀t ∈ [0,ω] , ∀ϕ ∈K. (15)

Step 2 : Let ϕ ∈ K and t1, t2 ∈ [0,ω]. Taking into account the assumptions (5), (11), (12) and
[Lemma 2.1, [12]], we arrive at

|(A ϕ)(t2)− (A ϕ)(t1)| ≤ 2β (H0 +‖p‖+(k1 + k2 (1+L))M) |t2− t1|
+βω ‖a‖(H0 +‖p‖+(k1 + k2 (1+L))M) |t2− t1|
= β (H0 +‖p‖+(k1 + k2 (1+L))M)(2+ω ‖a‖) |t2− t1| .

By virtue of (7), we get
|(A ϕ)(t2)− (A ϕ)(t1)| ≤ L |t2− t1| . (16)

Thanks to (15) and (16), we get
(A )(K)⊂K,

which completes the proof.
Now, we can formulate our existence result as follows :

Theorem 4 If the assumptions (4)-(7) and (14) are fulfilled, then equation (3) has at least one
positive periodic solution in K.

Proof. As a consequence of Lemmas 2 and 3, all conditions of Schauder’s fixed point theorem
are staisfied. So, we conclude that A has at least one fixed point which is a solution of equation
(3).

3.2. Uniqueness

Theorem 5 Besides the assumptions (4)-(7), we suppose that

βω ((‖p‖+ k2)(1+L)+ k1)< 1.

Then equation (3) has one and only one solution x ∈K.

Proof. The proof is based on using the Banach contraction principle.

3.3. Continuous dependence on parameters

Theorem 6 Under the hypothesis of Theorem 2, the unique solution of equation (3) depends
continuously on parameters.
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