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ABSTRACT
In this paper, using the Schauder fixed point theorem, the existence and uniqueness of the solu-
tion of the Cauchy type system of non linear fractional differential equations is established, in
which the fractional derivative in the sense of Caputo is used. Also, we propose the periodicity
of the long-term solution of the fractional dynamical system. Finally, an example has been illus-
trated to support the proof and make it tangible.
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1. INTRODUCTION

In recent years, fractional calculus has attracted the attention of researchers in engineering,
biology, economics and many other fields. In this article, we have studied the initial value pro-
blem of fractional differential equations (IVP){

(CDα u)(x) = f (x,u(x));
u(x0) = u0,

(1)

where the fractional derivative is in the sense of Caputo’s definition, the function f (x,u) : R×
Rn→ Rn is called vector field, and the dimension n > 1. Especially , Rn gives the appropriate a
proper norm ‖.‖ becomes a complete metric space.
Let J = [x0−a,x0 +a],B = {u ∈ Rn| ‖u−u0‖6 b} and E = {(x,u) ∈ R×Rn|x ∈ J,u ∈ B}.
A function u ∈ C 1(J,Rn) is said to be a solution of (1) PVI (1) if u satisfies the equation
CDα u(x) = f (x,u(x))a.e.J, and the condition u(x0) = x0.

2. PRELIMINARY CONCEPTS

2.1. Riemann–Liouville fractional integral :

Let f : [a,b)→ R, be a continuous function and α ∈ R+ the integral

(Iα
a f )(x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt (2)

is called a the Riemann-Liouville fractional integral of order α such that a ∈ R and Γ(.) is the
Gamma function. It should be noted that this definition exists for all x ∈ [a,b]. Also, it exists
under more general conditions described in detail by Miller and Ross (1993).
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2.2. Caputo fractional derivative

Let f be a function, such that
dn

dxn f is integrable, the fractional derivative of order α ( with

n−1 6 α 6 n) in the sense of Caputo is defined by :

CDα
a f (x) =

1
Γ(n−α)

∫ t

a
(x− t)n−α−1 f (n)(t)dt

= In−α
a

(
dn

dxn f (x)
)
.

(3)

2.3. Definition of periodic solution

A non-constant solution x(t) of any system is said to be a periodic solution if there exists
T > 0 such that x(t) = x(t +T ), for all t ∈ R (Wiggins, 2003).

3. MAIN RESULTS

In 2008, Lakshmikantham and Vatsala [8] give the following existence result for IVP(1).

3.1. Existence results

Theorem 3.1 [19] Assume that the function f : E → Rn satisfies the following conditions of
Carathéodory type :

i) f (x,u) is Lebesgue measurable with respect to x on J.
ii) f (x,u) is continuous with respect to u on B.

iii) there exist a constant β ∈]0,α[ and a real-valued function m(x) ∈ L
1
β (J) such that

‖ f (x,u)‖6 m(x), for almost every x ∈ J and all u ∈ B.
Then, for α ∈]0,1[ there at least exists a solution of the IVP(1) on the interval [x0−

h,x0+h] where h=min

a,

[
bΓ(α)

M

(
α−β

1−β

)1−β
] 1

α−β

and M =

(∫ x0+a

x0

(m(t))
1
β dt
)β

.

proof 3.1 The IVP(1) for the case where x ∈ [x0,x0 + h] are only discussed. Similar approach
could be used to verify the case where x ∈ [x0 − h,x0]. We know that f (x,u(x)) is Lebesgue
measurable in [x0,x0 + h] according to the conditions (i) and (ii).Direct calculation gives that

(x− t)α−1 ∈ L
1

1−β [x0,x], for x ∈ [x0,x0 + h].In light of the Hölder inequality, we obtain that,
(x− t)α−1 f (t,u(t)) is Lebesgue integrable with respect to t ∈ [x0,x] for all x ∈ [x0,x0 +h], and

∫ x

x0

‖(x− t)α−1 f (t,u(t))‖dt 6
(∫ x

x0

((x− t)α−1)
1

1−β dt
)1−β (∫ x

x0

(m(t))
1
β dt
)β

for u ∈ C ([x0,x0 +h],Rn), define norm of ‖u‖∗ = sup
t∈[x0,x0+h]

‖u(t)‖.

Then C ([x0,x0 +h],Rn) with ‖.‖∗ is a Banach space.
Let Ω = {u ∈ C ([x0,x0 +h],Rn) : ‖u−u0‖∗ 6 b} . Then, Ω is a closed, bounded and convex
subset of C ([x0,x0 +h],Rn).
We now define a mapping on Ω as follows. For an element u ∈Ω, let

(Ru)(x) = u0 +
1

Γ(α)

∫ x

x0

(x− t)α−1 f (t,u(t))dt, x ∈ [x0,x0 +h].
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a) We shall show that for any u ∈Ω, Ru ∈Ω.
In fact, by using the Hölder inequality and the condition (iii), we get

‖(Ru)(x)−u0‖6
1

Γ(α)

∫ x

x0

(x− t)α−1m(t)dt

6
1

Γ(α)

(
1−β

α−β

)1−β

(x− x0)
α−β

(∫ x0+h

x0

(m(t))
1
β dt
)β

6
1

Γ(α)

(
1−β

α−β

)1−β

hα−β M

6 b, pour x ∈ [x0,x0 +h].

(4)

This means that ‖(Ru)(x)−u0‖∗ 6 b, for x ∈ [x0,x0 +h]. Hence, R is a mapping from
Ω into itself.

b) We now show that R is completely continuous.
First, we will show that Ris continuous. For any um, u∈Ω, m = 1,2, . . . with lim

m→∞
‖um−

u‖∗ = 0, we get
lim

m→∞
um(x) = u(x), for x ∈ [x0,x0 +h].

Thus, by the condition (ii), we have

lim
m→∞

f (x,um(x)) = f (x,u(x)), for x ∈ [x0,x0 +h].

So, we can conclude that

sup
t∈[x0,x0+h]

‖ f (t,um(t))− f (t,u(t))‖→ 0, as m→ 0.

On the other hand,

‖(Rum)(x)− (Ru)(x)‖6 hα

Γ(α +1)
sup

t∈[x0,x0+h]

∥∥ f (t,um(t))− f (t,u(t))
∥∥, (5)

which implies

‖Rum−Ru‖∗ 6
hα

Γ(α +1)
sup

t∈[x0,x0+h]

∥∥ f (t,um(t))− f (t,u(t))
∥∥. (6)

Hence,
‖Rum−Ru‖∗→ 0 as m→ ∞.

This means that R is continuous.
Next, we show RΩ is relatively compact. It suffices to show that the family of functions
{Ru : u ∈Ω} is uniformly bounded and equicontinuous on [x0,x0 +h].
For u ∈Ω, we get

‖Ru‖∗ 6 ‖u0‖+b,

which means that {Ru : u ∈Ω} is uniformly bounded.
On the other hand, for any x1,x2 ∈ [x0,x0 +h], x1 < x2, by using the Hölder inequality,
we have
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‖(Ru)(x2)− (Ru)(x1)‖

=
1

Γ(α)

∥∥∥∫ x1

x0

((x2− t)α−1− (x1− t)α−1) f (t,u(t))dt +
∫ x2

x1

(x2− t)α−1 f (t,u(t))dt
∥∥∥

6
1

Γ(α)

∫ x1

x0

((x1− t)α−1− (x2− t)α−1)m(t)dt +
1

Γ(α)

∫ x2

x1

(x2− t)α−1m(t)dt

6
M

Γ(α)

(
1−β

α−β

)1−β (
(x1− x0)

α−1
1−β

+1
+(x2− x1)

α−1
1−β

+1− (x2− x0)
α−1
1−β

+1
)1−β

+
M

Γ(α)

(
1−β

α−β

)1−β (
(x2− x1)

α−1
1−β

+1
)1−β

6
2M

Γ(α)

(
1−β

α−β

)1−β

(x2− x1)
α−β .

(7)

As x1→ x2, the right-hand side of the above inequality tends to zero. Therefore {Ru : u ∈Ω}
is equicontinuous on [x0,x0 +h] and hence RΩ is relatively compact.

Bay Schauder’s fixed point Theorem, there is a u∗ ∈Ω such that Ru∗ = u∗, that is

u∗(x) = u0 +
1

Γ(α)

∫ x

x0

(x− t)α−1 f (t,u∗(t))dt, x ∈ [x0,x+h]. (8)

It is easy to see that u∗ is a solution of IVP (1) on [x0,x0 +h]. This completes.

Corollary 3.1 Let f ∈ C (J × B,Rn). Then, for α ∈]0,1[, there at least exists a solution of

the IVP (1) on the interval [x0− h′,x0 + h′], where h′ = min

{
a,
[

b
M′

Γ(α +1)
] 1

α

}
and M′ =

sup
(x,u)∈J×B

f (x,u).

proof 3.2 The proof of Corollaire 3.1 is similar to that of Theorem 3.1, it is therefore omitted.

3.2. Uniqueness results

Theorem 3.2 [19] Assume that there exist constant γ ∈]0,α[ and a real-valued function µ(x) ∈
L

1
γ [x0,x0+a] such that ‖ f (x,u)− f (x,v)‖6 µ(x)‖u−v‖, for almost every x∈ J and all u,v∈ B.

If the solutions of IVP (1) exist on [x0 − h,x0 + h], then the solution of IVP (1), where h <

min

a,

[
Γ(α)

M1

(
α− γ

1− γ

)1−γ
] 1

α−γ

 and M1 =

(∫ x0+a

x0

(µ(t))
1
γ dt
)γ

.

proof 3.3 Assume that v(x) and u(x) are the solutions of IVP(1) on [x0,x0 +h].Then

v(x) = u0 +
1

Γ(α)

∫ x

x0

(x− t)α−1 f (t,v(t))dt, x ∈ [x0,x0 +h]

and
u(x) = u0 +

1
Γ(α)

∫ x

x0

(x− t)α−1 f (t,u(t))dt, x ∈ [x0,x0 +h].

Thus according to the hypothesis of the theorem, we have

‖v(x)−u(x)‖6 c max
t∈[x0,x0+δ ]

‖v(x)−u(x)‖, x ∈ [x0,x0 +h],
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where c =
M1

Γ(α)

(
1− γ

α− γ

)1−γ

hα−γ ∈]0,1[. Therefore

max
t∈[x0,x0+δ ]

‖v(x)−u(x)‖6 c max
t∈[x0,x0+δ ]

‖v(x)−u(x)‖, x ∈ [x0,x0 +h].

Which implies
u(x)≡ v(x), x ∈ [x0,x0 +h].

The proof is complete.

3.3. Existence results of periodicity of the long-time solution to fractional dynamical sys-
tem

Tavazoei[14] claims that the existence of periodic solutions of IVP (1) is impossible. Howe-
ver, Yazdani and Salarieh [17] proved that this is not a general claim. Under certain conditions
or circumstances, periodic solutions can exist in a fractional order system (1). The author proves
that the periodic solution of IVP (1) can be tested by considering the steady-state behavior of the
solution. Since the fractional derivative in IVP (1) is not local and different from the integer de-
rivative, the solution of IVP (1) depends on its entire memory at any time t. In other words, if the
difference between the lower end and the upper end of the fractional derivative of IVP (1) should
be chosen to be large enough, that is, the lower end should be close to infinity, a periodic solution
may be detected. After studying the periodicity of Weyl’s fractional derivatives of periodic func-
tions, this argument became stronger. In the section 19 of [6], the periodicity of fractional-order
differential operator of periodic function has been discussed. We have the following results.

3.3.1. Memory dependency of solutions :

L’opérateur dérivé dans le calcul fractionnaire semble différent de celui d’ordre entier car il
n’est pas local. En d’autres termes, lorsque cet opérateur apparaît dans une équation, la solution
à l’instant t dépend de sa mémoire aux instants avant t. Pour montrer ce fait, considérons le
théorème suivant.

Theorem 3.3 [15] Let f (x) satisfy the Lipschitz condition. Then, the solutions of the IVP (1) are
memory dependent.
It means that the solution of IVP (1), which is denoted by φ(t,xa), and the solution of{ CDα

b v = f (v),
y(b) = vb , φ(b,va), b > a,

(9)

which is denoted by ψ(t,vb), do not coincide for t > b.

3.3.2. Existence of periodic solutions in steady state

Periodic orbits are steady state solutions ; thus in a fractional order system due to the me-
mory dependence of the derivatives, the whole memory of the solution should be considered in
obtaining periodic orbits. It means that the difference between the lower terminal and the upper
terminal in the derivatives should be chosen large enough. To detect periodic solution it implies
that the lower terminal of the fractional derivative should approach to infinity. To prove this, let
us consider the following theorem.

Theorem 3.4 [17] The time-invariant fractional order systems presented by IVP (1) does not
have any periodic solution unless the lower terminal of the derivative is ±∞.
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Exemple 3.1 Consider the following fractional differential equation :

CDα
a

[
x1
x2

]
= ω

α
0

[
cos απ

2 sin απ

2
−sin απ

2 cos απ

2

][
x1
x2

]
(10)

where 0.5 < α < 1. If the states are changed by the following transformation[
x1
x2

]
=

[
0 sin απ

2
−ωα

0 cos απ

2

][
y1
y2

]
. (11)

The differential equation(10)can be rewritten as

CDα
a

[
y1
y2

]
=

[
0 1

−ω2α
0 2ωα

0 cos απ

2

][
y1
y2

]
. (12)

Thus this state space equation can be written as the following differential equation :

CD2α
a y1−2ω

α
0 cos

απ

2
CDα

a y1 +ω
2α
0 y1 = 0. (13)

To show the periodicity of the answer of the Eq.(13), let us consider the analytical solution of
Eq.(13) which is shown in Eq.(14). It should be noticed that this solution is obtained by taking
Laplace transform from Eq.(13) and then applying the inverse Laplace transform to it.

y1(t)=
sinα,2−α (ω0(t−a))

ωα
0 sin

απ

2

ẏ1(a)+
sinα,1−α (ω0(t−a))

ωα
0 sin

απ

2

y1(a)−
2ωα

0 cos
απ

2
sinα,1(ω0(t−a))

ωα
0 sin

απ

2

y1(a)

(14)
where sinα,β (.) is defined by :

sinα,β (z),
tβ−1

2 j

(
(Eα,β (z

α e j απ

2 )−Eα,β (z
α e− j απ

2 )
)

and Eα,β (.) is generalized Mittag-Leffler function which is defined by Kilbas et al. (2006).

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
, α > 0, β > 0, (15)

Although sinα,β (z) is not periodic function for any finite value of z, when z tends to infinity, it
shows periodic behavior, i.e.

lim
z→+∞

sinα,β (ω0t) =
ω

1−β

0
α

sin
(

ω0t +
(1−β )π

2

)
. (16)

Thus when lower terminal tend to infinity, Eq.(13) has periodic solution with the frequency of
ω0.

4. CONCLUSION AND DISCUSSION

In a fractional order system, when the lower end of the derivative operator tends to −∞, that
is, when the steady-state behavior of the solution is taken into account, periodic solutions may
be detected. But these types of solutions cannot be found in fractional systems with any finite
lower end. This has been proved in Theorem 3.4 and mentioned earlier by Tavazoei and Haeri
(2009).
It has been shown that with this assumption, the harmonic balance method can be applied to
fractional-order systems.
It can also be concluded that, like any other integer order system; the existence of periodic orbits
can be expected The chaotic attractor of the fractional order system, because chaos is the steady-
state behavior of the dynamic system.
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