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ABSTRACT

In this paper, we study the Langevin equation within the generalized proportional fractional deri-
vative. The proposed equation involves a variable coefficient and subjects to mixed integrodiffe-
rential boundary conditions. We introduce the generalized proportional fractional derivative and
expose some of its features. We mainly investigate the existence, uniqueness and different types
of Ulam stability of the solutions via fixed point theorems and inequality techniques. Finally, we
provide an example to support our main results.

1. INTRODUCTION

In the last few decades, the investigation of fractional differential equations has been picking
up much attention of researchers. This is due to the fact that fractional differential equations have
various applications in engineering and scientific disciplines, for example, fluid dynamics, fractal
theory, diffusion in porous media, fractional biological neurons, traffic flow, polymer rheology,
neural network modeling, viscoelastic panel in supersonic gas flow, real system characterized
by power laws, electrodynamics of complex medium, sandwich system identification, nonlinear
oscillation of earthquake, models of population growth, mathematical modeling of the diffusion
of discrete particles in a turbulent fluid, nuclear reactors and theory of population dynamics.
The fractional differential equation is an important tool to describe the memory and hereditary
properties of various materials and phenomena. The details on the theory and its applications
may be found in books [19, 24, 27] and references therein.

Recently, fractional-order differential equations equipped with a variety of boundary condi-
tions have been studied. The literature on the topic includes the existence and uniqueness re-
sults related to classical, initial value problem, periodic/anti-periodic, nonlocal, multi-point,
integral boundary conditions, and Integral Fractional Boundary Condition, for instance, see
[5, 6, 7, 8, 9, 10, 11, 12, ?, 13, 15, 21, 22, 23, 29, 30].

The Langevin equation (first formulated by Langevin in 1908 to give an elaborate description
of Brownian motion) is found to be an effective tool to describe the evolution of physical pheno-
mena in fluctuating environments [20]. Although the existing literature on solutions of fractional
Langevin equations is quite wide, can be found in [1, 2, 26, 30] and the references cited therein.

The aim of this paper is to study existence, uniqueness and different types of Ulam stability
for the following generalized proportional fractional Langevin differential equation with variable
coefficients and mixed intergo-differential boundary conditions

CDβ ,ρ
(CDα,ρ +χ(t)

)
x(t) = F (t,x(t)) , t ∈ [0,1]

x(0) = δ , x(1) = θ Iµ,ρ x(ξ ),
(1)
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where CDv,ρ denote the generalized proportional Caputo and Riemann-Liouvill fractional deri-
vatives of order v ∈ {α,β}, respectively, 0 < α,β ≤ 1,1 < α +β ≤ 2,ρ > 0, Iµ,ρ denotes the
generalized proportional fractional integral of order µ > 0,ρ > 0,χ ∈C([0,1],R), the nonlinear
function F ∈C ([0,1]×R,R), the given constants δ ,θ ∈ R and ξ ∈ (0,1).

Here is a brief outline of the work. Section 2 provides the definitions and initial results
presupposed to prove our key findings, and we make a present of an assistive lemma that extract
the representation for the solutions of the problem (1). In Section 3, we establish the existence
and uniqueness of the solutions taking advantage of the Banach fixed point theorem for the
proposed problem, we also employ inequality techniques to prove the Ulam stability for the
problem (1). The last section promotes our outcomes to the problem (1) by giving an illustrative
example to support and justify the acquired results.

2. BASIC PRELIMINARIES

The notations and terminologies in this section are adopted from [18, 16, 28]. In control
theory, a proportional derivative controller (PDC) for controller output u at time t with two
tuning parameters has the algorithm

u(t) = κpE(t)+κd
d
dt

E(t)

where κp is the proportional gain, κd is the derivative gain, and E is the input deviation or the
error between the state variable and the process variable. The recent investigations have shown
that PDC has direct incorporation in the control of complex networks models ; see [14] for more
details.

For ρ ∈ [0,1], let the functions κ0,κ1 : [0,1]×R→ [0,∞) be continuous such that, for all
t ∈ R

lim
ρ→0+

κ1(ρ, t) = 1, lim
ρ→0+

κ0(ρ, t) = 0, lim
ρ→1−

κ1(ρ, t) = 0, lim
ρ→1−

κ0(ρ, t) = 1

and κ1(ρ, t) 6= 0,ρ ∈ [0,1),κ0(ρ, t) 6= 0,ρ ∈ (0,1]. Then, Anderson and Ulness [3] defined the
proportional derivative of order ρ by

Dρ
ξ (t) = κ1(ρ, t)ξ (t)+κ0(ρ, t)ξ

′(t) (2)

provided that the right had side exists at t ∈R and ξ ′ := d
dtξ . For the operator given in (2), κ1 is

a type of proportional gain κp,κ0 is a type of derivative gain κd ,ξ is the error, and u =Dρ ξ is
the controller output. The reader can refer to [4] for more details about the control theory of the
proportional derivative and its component functions. We next restrict ourselves to the case that
κ1(ρ, t) = 1−ρ and κ0(ρ, t) = ρ . Therefore, (2) becomes

Dρ
ξ (t) = (1−ρ)ξ (t)+ρξ

′(t) (3)

It is easy to figure out that limρ→0+ D
ρ ξ (t) = ξ (t) and limρ→1−D

ρ ξ (t) = ξ ′(t). Thus, the
derivative (3) is somehow considered to be more general than the conformable derivative, which
evidently does not tend to the original functions as ρ tends to 0.

Definition 1 [18] For 0 < ρ ≤ 1,α ∈ C and Re(α)> 0, the GPF integral of F of order α is

(
Iα,ρ
a F

)
(t) =

∫ t

a

(t− s)α−1

ρα Γ(α)
e

ρ−1
ρ

(t−s)F (s)ds = ρ
−α e

ρ−1
ρ

tIα
a

(
e

1−ρ

ρ
tF (t)

)
where Iα

a is Riemann-Liouville fractional integral.
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Definition 2 [18] For 0 < ρ ≤ 1,α ∈ C with Re(α)≥ 0, the GPF derivative of Caputo type of
F of order α is (

cD
α,ρ
a F

)
(t) =

∫ t

a

(t− s)n−α−1

ρn−α Γ(n−α)
e

ρ−1
ρ

(t−s)
(Dn,ρF )(s)ds

where n = [Re(α)]+1 and [Re(α)] represents the integer part of the real number α .

Lemma 1 [18] For 0 < ρ ≤ 1 and n = [Re(α)]+1, we have
(

cD
α,ρ
a Iα,ρ

a F
)
(t) = F (t), and

(
Iα,ρ
a cD

α,ρ
a F

)
(t) = F (t)−

n−1

∑
k=0

(
Dk,ρF

)
(a)

ρkk!
(t−a)ke

ρ−1
ρ

(t−a)

Proposition 2 [18] Let α,β ∈C be such that Re(α)≥ 0 and Re(β )> 0. Then, for any 0< ρ ≤ 1
and n = [Re(α)]+1, we have

(i)
(

Iα,ρ
a e

ρ−1
ρ

t
(t−a)β−1

)
(x) = Γ(β )

Γ(β+α)ρα e
ρ−1

ρ
x
(x−a)β+α−1, Re(α)> 0

(ii)
(

cD
α,ρ
a e

ρ−1
ρ

t
(t−a)β−1

)
(x) = ρα Γ(β )

Γ(β−α)
e

ρ−1
ρ

x
(x−a)β−α−1, Re(α)> n

(iii)
(

cD
α,ρ
a e

ρ−1
ρ

t
(t−a)k

)
(x) = 0, Re(α)> n, k = 0,1, . . . ,n−1.

In order to transform the main problem into a fixed point problem, (1) must be converted to
an equivalent integral equation. To do this, we provide the following lemma.

Lemma 3 Let h : [0,1]→R be a continuous function, 0<α,β ,ρ ≤ 1,1<α+β ≤ 2 and µ > 0.
Then, the function x∈C([0,1],R) is the solution to the following linear generalized proportional
fractional Langevin equation equipped with mixed boundary conditions :{

CDβ ,ρ
(CDα,ρ +χ(t)

)
x(t) = h(t), t ∈ [0,1]

x(0) = δ , x(1) = θ Iµ,ρ x(ξ )
(4)

if and only if x satisfies the following fractional integral equation

x(t)

=
1

ρα+β Γ(α +β )

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α+β−1h(s)ds

− 1
ρα Γ(α)

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α−1

χ(s)x(s)ds+δe
ρ−1

ρ
t

+
tα e

ρ−1
ρ

t

Ωρα Γ(α +1)

(
θ

ρα+β+µ Γ(α +β +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+β+µ−1h(s)ds

− 1
ρα+β Γ(α +β )

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α+β−1h(s)ds

− θ

ρα+µ Γ(α +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+µ−1

χ(s)x(s)ds

+
1

ρα Γ(α)

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α−1

χ(s)x(s)ds+
θδξ µ e

ρ−1
ρ

ξ

ρµ Γ(µ +1)

 (5)

where

Ω :=
e

ρ−1
ρ

ρα Γ(α +1)
− θξ α+µ e

ρ−1
ρ

ξ

ρα+µ Γ(α +µ +1)
6= 0 (6)
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Proof. Let x be a solution of the problem (4). By using Lemma 1 with Proposition 2 (i), the first
equation of (4) can be written as

x(t) = Iα+β ,ρ h(t)− Iα,ρ
χ(t)x(t)+ c1

tα e
ρ−1

ρ
t

ρα Γ(α +1)
+ c2e

ρ−1
ρ

t (7)

where c1,c2 ∈R. From the first condition of (4), x(0) = δ , we obtain c2 = δ . Taking the operator
Iµ,ρ into (7), we get

Iµ,ρ
x(t) = Iα+β+µ,ρ h(t)− Iα+µ,ρ

χ(t)x(t)+ c1
tα+µ e

ρ−1
ρ

t

ρα+µ Γ(α +µ +1)
+

δ tµ e
ρ−1

ρ
t

ρµ Γ(µ +1)

From the second condition of (4), x(1) = θ Iµ,ρ x(ξ ), which leads to

c1 =
1
Ω

(
θ Iα+β+µ,ρ h(ξ )− Iα+β ,ρ h(1)

−θ Iα+µ,ρ
χ(ξ )x(ξ )+ Iα,ρ

χ(1)x(1)+
θδξ µ e

ρ−1
ρ

ξ

ρµ Γ(µ +1)


where Ω is defined by (6). Substituting the values of c1 and c2 into (7), we get the fractional
integral equation ( 5 ). Conversely, it is easily to show by direct computation that the solution
x(t) is given by (5) satisfies the problem (4) under the given conditions. The proof is completed.

For the completeness, we recall the following tools [29].

Theorem 4 Let B be a non-empty closed subset of a Banach space E. Then any contraction
mapping T from B into itself has a unique fixed point.

Theorem 5 Let E be a Banach space and T : E → E is a completely continuous operator and
the set F= {x ∈ E : x = ρT x,0 < ρ ≤ 1} is bounded. Then T has a fixed point in E.

3. MAIN RESULTS

In this section, we present the existence and uniqueness of solutions to problem (1) based on
the Banach’s fixed point theorem.

Let C = C([0,1],R) be the Banach space of all continuous functions from [0,1] into R
equipped with the norm ‖x‖= maxt∈[0,1]{|x(t)|}.

In view of Lemma 3, an operator Q : C → C is defined by

Qx(t)

=
1

ρα+β Γ(α +β )

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α+β−1h(s)ds

− 1
ρα Γ(α)

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α−1

χ(s)x(s)ds+δe
ρ−1

ρ
t

+
tα e

ρ−1
ρ

t

Ωρα Γ(α +1)

(
θ

ρα+β+µ Γ(α +β +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+β+µ−1h(s)ds

− 1
ρα+β Γ(α +β )

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α+β−1h(s)ds

− θ

ρα+µ Γ(α +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+µ−1

χ(s)x(s)ds

+
1

ρα Γ(α)

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α−1

χ(s)x(s)ds+
θδξ µ e

ρ−1
ρ

ξ

ρµ Γ(µ +1)

 (8)
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where Ω is defined by (6).
For the sake of computational convenience, we make use of the following constants :

χ
∗ = sup

t∈[0,1]
|χ(t)|

Λ1 =
1

|Ω|ρ2α+β Γ(α +1)

(
|Ω|ρα Γ(α +1)+1

Γ(α +β +1)
+

|θ |ξ α+β+µ

ρµ Γ(α +β +µ +1)

)

Λ2 =
1

|Ω|ρα Γ(α +1)
(
(|Ω|ρα

Γ(α +1)+1) Iα,ρ |χ(1)|+ |θ |Iα+µ,ρ |χ(ξ )|
)

(9)

We prove our main results under the following assumptions :
(H1) the function F : [0,1]×R→ R is continuous,
(H2) there exist non-negative continuous functions a1 ∈ C such that

|F (t,x1)−F (t,x2)| ≤ a1(t) |x1− y1| ,∀x1,x2 ∈ R, t ∈ [0,1]

with a∗1 = supt∈[0,1] a1(t).

3.1. Existence and uniqueness results based on the Banach fixed point theorem

The existence and uniqueness results of a solution for problem (1) will be proved by using
Banach fixed point theorem.

Theorem 6 Assume that (H1) and (H2) are satisfied. If
[(

a∗1Λ1 +Λ2
)]

< 1, then problem ( 1)
has a unique solution in C , where Λi(i = 1,2) are defined in (9).

Proof. Show that Q : C → C is contraction. For any x,y ∈ C and for each t ∈ [0,1], we have

|(Qx)(t)− (Qy)(t)|

≤ 1
ρα+β Γ(α +β )

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α+β−1 |F (s,x(s))−F (s,y(s))|ds

+
1

ρα Γ(α)

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α−1|χ(s)||x(s)− y(s)|ds

+
tα e

ρ−1
ρ

t

|Ω|ρα Γ(α +1)

(
|θ |

ρα+β+µ Γ(α +β +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+β+µ−1 |F (s,x(s))

−F (s,y(s)) | ds

+
1

ρα+β Γ(α +β )

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α+β−1 |F (s,x(s))−F (s,y(s))|ds

+
|θ |

ρα+µ Γ(α +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+µ−1|χ(s)||x(s)− y(s)|ds

+
1

ρα Γ(α)

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α−1|χ(s)||x(s)− y(s)|ds

)
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Using the property of e
ρ−1

ρ
(u−s) ≤ 1 for 0≤ s < u < t ≤ 1 and (H2) implies that

|(Qx)(t)− (Qy)(t)|

≤ 1
|Ω|ρ2α+β Γ(α +β )

(
|Ω|ρα +

1
Γ(α +1)

)
×
∫ 1

0
(1− s)α+β−1 (a1(s)|x(s)− y(s)|)ds

+
|θ |

|Ω|ρ2α+β+µ Γ(α +1)Γ(α +β +µ)

×
∫

ξ

0
(ξ − s)α+β+µ−1 (a1(s)|x(s)− y(s)|)ds

+
1

|Ω|ρ2α Γ(α)

(
|Ω|ρα +

1
Γ(α +1)

)∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α−1|χ(s)||x(s)− y(s)|ds

+
|θ |

|Ω|ρ2α+µ Γ(α +1)Γ(α +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+µ−1|χ(s)||x(s)− y(s)|ds

Then

‖Qx−Qy‖ (10)

≤

{
a∗1

|Ω|ρ2α+β Γ(α +1)

(
|Ω|ρα Γ(α +1)+1

Γ(α +β +1)
+

|θ |ξ α+β+µ

ρµ Γ(α +β +µ +1)

)

+
1

|Ω|ρα Γ(α +1)
(
(|Ω|ρα

Γ(α +1)+1) Iα,ρ |χ(1)|+ |θ |Iα+µ,ρ |χ(ξ )|
)}
‖x− y‖

= (a∗1Λ1 +Λ2)‖x− y‖ (11)

It follows from (8) and (10) that ‖Qx−Qy‖ ≤
[(

a∗1Λ1 +Λ2
)]
‖x− y‖, where Λi(i = 1,2) are

defined in (9). Hence, by Banach fixed point theorem, Q is a contraction. Therefore, it has a
unique fixed point, that is, the unique solution of problem (1).

3.2. Stability Results

In the recent section, we interested to studied UH and UHR stability of System (1).

Definition 3 System (1) is UH stable if there exists a real number cF > 0 such that, for each
ε ∈ R+ and for each x ∈ C satisfying

∣∣∣CDβ ,ρ
(CDα,ρ +χ(t)

)
x(t)−F (t,x(t))

∣∣∣≤ ε, (t ∈ I),

x(0) = δ ,x(1) = θ Iµ,ρ x(ξ ),
(12)

there exists a unique solution x̃ ∈ C of (1) with

‖x− x̃‖ ≤ cF ε.

Definition 4 System (1) is generalized UH stable (GUH) if there exists CF ∈C
(
R+,R+

)
,CF (0)=

0 such that for each ε ∈ R+ and for each x ∈ C satisfying (12), there exists a unique solution
x̃ ∈ C of (1) with

‖x− x̃‖ ≤CF (ε).
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Remark 1 A function x̃ ∈ C is a solution of inequality (3) if and only if there exists a function
F ∈ C (which depends on solution x̃ ) such that
1.|G (t)| ≤ ε, t ∈ I.
2.CDβ ,ρ

(CDα,ρ +χ(t)
)

x(t) = F (t,x(t)))+G (t), t ∈ I.

Now, we discuss the UH stability of solution to the problem (1).

Theorem 7 Suppose that the conditions (H2) and
[(

a∗1Λ1 +Λ2
)]

< 1 are fulfilled. Then, the
solution of (1) is UH and GUH stable.

Proof. Let ε > 0 and let x̃ ∈ C be a function which satisfies the inequality (12) and let x ∈ C the
unique solution of the following problem


CDβ ,ρ

(CDα,ρ +χ(t)
)

x(t) = F (t,x(t)) , (t ∈ I),

x(0) = δ ,x(1) = θ Iµ,ρ x(ξ ),
(13)

By Lemma 3, we have

x(t) =
1

ρα+β Γ(α +β )

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α+β−1F (s,x(s))ds

− 1
ρα Γ(α)

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α−1

χ(s)x(s)ds+δe
ρ−1

ρ
t

+
tα e

ρ−1
ρ

t

Ωρα Γ(α +1)

(
θ

ρα+β+µ Γ(α +β +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+β+µ−1F (s,x(s))ds

− 1
ρα+β Γ(α +β )

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α+β−1F (s,x(s))ds

− θ

ρα+µ Γ(α +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+µ−1

χ(s)x(s)ds

+
1

ρα Γ(α)

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α−1

χ(s)x(s)ds+
θδξ µ e

ρ−1
ρ

ξ

ρµ Γ(µ +1)


Since we have assumed that x̃ is a solution of (3), hence we have by Remark 1.


CDβ ,ρ

(CDα,ρ +χ(t)
)

x̃(t) = F (t, x̃(t)) , (t ∈ I),

x̃(0) = δ , x̃(1) = θ Iµ,ρ x̃(ξ ),
(14)

Again by Lemma 3, we have
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x̃(t) =
1

ρα+β Γ(α +β )

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α+β−1F (s,x(s))ds

− 1
ρα Γ(α)

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α−1

χ(s)x̃(s)ds+δe
ρ−1

ρ
t

+
tα e

ρ−1
ρ

t

Ωρα Γ(α +1)

(
θ

ρα+β+µ Γ(α +β +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+β+µ−1F (s,x(s))ds

− 1
ρα+β Γ(α +β )

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α+β−1F (s,x(s))ds

− θ

ρα+µ Γ(α +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+µ−1

χ(s)x̃(s)ds

+
1

ρα Γ(α)

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α−1

χ(s)x̃(s)ds+
θδξ µ e

ρ−1
ρ

ξ

ρµ Γ(µ +1)


+

1
ρα+β Γ(α +β )

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α+β−1G (s)ds

+
tα e

ρ−1
ρ

t

Ωρα Γ(α +1)

(
θ

ρα+β+µ Γ(α +β +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+β+µ−1G (s)ds

− 1
ρα+β Γ(α +β )

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α+β−1G (s)ds

)
On the other hand, we have, for each ς ∈ I

|x̃(t)− x(t)|

=
1

ρα+β Γ(α +β )

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α+β−1 |F (s, x̃(s))−F (s,x(s))|ds

− 1
ρα Γ(α)

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α−1

χ(s) |x̃(s)− x(s)|ds+δe
ρ−1

ρ
t

+
tα e

ρ−1
ρ

t

Ωρα Γ(α +1)

(
θ

ρα+β+µ Γ(α +β +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+β+µ−1 |F (s, x̃(s))−F (s,x(s))|ds

− 1
ρα+β Γ(α +β )

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α+β−1 |F (s, x̃(s))−F (s,x(s))|ds

− θ

ρα+µ Γ(α +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+µ−1

χ(s) |x̃(s)− x(s)|ds

+
1

ρα Γ(α)

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α−1

χ(s) |x̃(s)− x(s)|ds+
θδξ µ e

ρ−1
ρ

ξ

ρµ Γ(µ +1)


+

1
ρα+β Γ(α +β )

∫ t

0
e

ρ−1
ρ

(t−s)
(t− s)α+β−1G (s)ds

+
tα e

ρ−1
ρ

t

Ωρα Γ(α +1)

(
θ

ρα+β+µ Γ(α +β +µ)

∫
ξ

0
e

ρ−1
ρ

(ξ−s)
(ξ − s)α+β+µ−1G (s)ds

− 1
ρα+β Γ(α +β )

∫ 1

0
e

ρ−1
ρ

(1−s)
(1− s)α+β−1G (s)ds

)
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Hence using part 1 of Remark 1 and (H2) we can get

|x̃− x| ≤ Λ1ε +[(a∗1Λ1 +Λ2)]‖x− x̃‖,

In consequence, it follows that

‖x̃− x| ≤ Λ1

1−
[(

a∗1Λ1 +Λ2
)] ε.

If we let cF = Λ1
1−[(a∗1Λ1+Λ2)]

, then, the UH stability condition is satisfied. More generally, for

CF (ε) = Λ1
1−[(a∗1Λ1+Λ2)]

ε ; CF (0) = 0 the generalized UH stability condition is also satisfied.
This completes the proof.

4. EXAMPLE

Example 1 Consider the following problem{
CD0.5,0.9

(
0.7,0.9
D + 1

16 t2e
ρ−1

ρ
t
)

x(t) = F (t,x(t)) , t ∈ [0,1]

x(0) = 0.2, x(1) = 5I0.1,0.9x(0.8)
(15)

Here α = 0.7,β = 0.5,µ = 0.1,ρ = 0.9,δ = 0.2,θ = 5 and ξ = 0.8. From the given data,
we can utilize Maple to obtain that Ω ≈ −2.0311 6= 0,Λ1 ≈ 1.2965, Λ2 ≈ 0.4131 and χ̄ =
supt∈[0,1] |χ(t)| ≈ 0.0559. Let F be defined by

F (t,x,y) = 2t3 +
9e−t

10(t +5)
· |x|

4+ |x|
.

For x1,x2 ∈ R, we have

|F (t,x1)−F (t,x2)| ≤
9e−t

40(t +5)
|x1− x2|

Then we have a1(t) = 9e−t

40(t+5) with a∗1 = 0.045. Hence

(a∗1Λ1 +Λ2)≈ 0.3705112437 < 1

This ensures the existence of unique solution for system (15) according to Theorem 6. Further-
more, we can compute

Λ1[
1−
(
a∗1Λ1 +Λ2

)] ≈ 5.052686151 > 0

Thus, by use of Theorem 7, (15) is UH stable and consequently generalized UH stable.
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