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ABSTRACT

In this paper, we establish sufficient conditions for the existence of solutions and Ulam-
Hyers-Rasias stability for a class of boundary value problem for implicit fractional differential
equations with Caputo–Exponential fractional derivative in Banach space. The arguments are
based upon the Darbo’s theorem fixed point and Mönch’s fixed point theorem together with the
measure of noncompactness. An example is included to show the applicability of our results.
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1. INTRODUCTION

The fractional calculus play a very important role in numerous application as in in-
dustrial robotics, in optimal control, in population dynamics, etc. That is why many authors are
studying and developing the theory of fractional calculus and fractional differential equations
and their important properties. See, for example, the books [1, 4, 5, 7, 8, 19, 27] and the research
papers [2, 3, 12–16, 23–25] and the references therein.

In [10] by means of the Banach contraction principle, Benchohra and Bouriah studied the
existence and Ulam stability of nonlinear fractional boundary value problem involving Caputo
derivative

cDα
0 y(t) = χ(t,y(t), cDα

0 y(t)), for each, t ∈ J := [0,T ],T > 0, 0 < α ≤ 1,

d1y(0)+d2y(T ) = d3,

and
cDα

0 y(t) = χ(t,y(t), cDα
0 y(t)), for each, t ∈ J, 0 < α ≤ 1,

y(0)+ϑ(y) = y∗,

where χ : J×R×R→ R, ϑ : C(J,R)→ R are a given functions and y∗,d1,d2,d3 ∈ R. And in
[11] by means of technique of measure of noncompactness and the fixed point theorems of Darbo
and Mönch, the authors studied the existence of nonlinear fractional boundary value problem
involving Caputo derivative

cDρ

0 x(t) = χ(t,x(t), cDρ

0 x(t)), for each, t ∈ J := [0,b],b > 0, 0 < ρ ≤ 1,

d1x(0)+d2y(b) = d3,

and
cDρ

0 x(t) = χ(t,x(t), cDρ

0 x(t)), for each, t ∈ J,b > 0, 0 < ρ ≤ 1,
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x(0)+ϑ(x) = x∗,

where χ : J×E×E→ E, ϑ : C(J,E)→ E are a given functions and d1,d2 ∈ R, d3,x∗ ∈ E, and
(E,‖ · ‖) is a real Banach space.

In [19] (p.99 sect. 2.5), Kilbas et al. present the definitions and some properties of the fractio-
nal integral and fractional derivatives of a function f with respect to another function ψ. In [26],
Tariboon and Ntouyas get ψ (t) = et and introduce a new class of exponential type fractional
integral and exponential type fractional derivative. Meanwhile, Malti et al. [20] establish the
existence and uniqueness results of solutions for a class of impulsive boundary value problem
for nonlinear implicit fractional differential equations involving Caputo exponential type fractio-
nal derivative.

Motivated by the above works, we investigate the existence of solutions and Ulam-Hyers-
Rasias stability (U-H-R) for a class of the boundary value problem (BVP) for the following
nonlinear implicit fractional-order differential equation (NIFDE) in Banach space :

e
cDρ

0 ω(t) = f (t,y(t), e
cDρ

0 ω(t)), for each, t ∈ J := [0,b],b > 0, 0 < ρ ≤ 1, (1)

c1ω(0)+ c2ω(b) = δ , (2)

where e
cDρ

0 is the exponential left-sided of Caputo–Exponential type fractional derivative, f :
J×E ×E → E is a given function and c1, c2, are real constants with c1 + c2 6= 0, and δ ∈ E,
where (E,‖ · ‖) is a real Banach space.

The paper is organized as follows. In Sect. 2, we introduce Some notations, definitions,
lemmas and theorems. In the first subsection of Sect. 3, we prove existence results of the BVP for
NIFDE (1)-(2) by using Darbo’s fixed point theorem and on Mönch’s fixed point theorem com-
bined with the measure of noncompactness. While in the Sect. 4, we study the U-H-R stability.
In addition to illustrate the results presented, we give an example.

2. PRELIMINARIES

In this section, we introduce some notations, definitions, lemmas, properties and fixed
point theorems that will be used in the remainder of this paper. Let J = [0,b] with b > 0 be a
finite interval of the real line R and C :=C(J,E) be the Banach space of all continuous functions
v from J into E with the supremum norm

‖ω‖∞ := sup
t∈J
‖ω(t)‖.

The notation L1(J,E) denotes the Banach space of measurable functions u : J → E which are
Bochner integrable normed by

‖u‖L1 =
∫ b

0
‖ω(s)‖ds, for all ω ∈ L1(J,E).

As usual, AC(J) denote the space of absolutely continuous function from J into E. We denote by
ACn

e (J) the space defined by

ACn
e (J) :=

{
ω : J→ E : eDn−1

ω(t) ∈ AC(J), eD = e−t d
dt

}
,

where n = [α] + 1 and [α] is the integer part of α. In particular, if 0 < α ≤ 1, then n = 1 and
AC1

e (J) := ACe(J).
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Definition 1 ( [26]) The exponential type fractional integral of order α > 0 of a function h ∈
L1(J,E) is defined by

(eIα
0 h)(t) :=

1
Γ(α)

∫ t

0

(
et − es)α−1 h(s)esds, for each t ∈ J,

where Γ(.) is the (Euler’s) Gamma function defined by

Γ(ξ ) =
∫

∞

0
tξ−1e−tdt, ξ > 0.

Definition 2 ( [26]) Let α > 0 and h ∈ ACn
e (J). The Caputo exponential type fractional deriva-

tives of order α is defined by

(e
cDα

0 h)(t) :=
1

Γ(n−α)

∫ t

0

(
et − es)n−α−1

(
e−s d

ds

)n
h(s)

ds
e−s , for each t ∈ J,

where n = [α]+1 and [α] is the integer part of α. In particular, if α = 0, then(
e
cD0

(·)h
)
(t) := h(t),

Property 1 ( [26]) If α,β > 0, then

eIα
0
(
et −1

)β
=

Γ(β +1)
Γ(α +β +1)

(
et −1

)α+β
, for a.e. t ∈ J.

Property 2 ( [26]) If α > 0 and 1≤ p < ∞, then for h ∈ L
p
(J) we have

e
cDα

0 (
eIα

0 h)(t) = h(t).

Property 3 [26] Let α ≥ 0 and n = [α] + 1 and h ∈ ACn
e (J). Then we have the following

formulas

eIα
0 (e

cDα
0 h)(t) = h(t)−

n−1

∑
k=0

(et −1)k

k!
eDkh(0).

Lemma 4 Let α > 0, and h ∈ ACn
e (J). Then the differential equation

e
cDα

0 h(t) = 0

has a solutions

h(t) = η0 +η1(es−1)+η2(es−1)2 + . . .+ηn−1(es−1)n−1,

where ηi ∈ R, i = 0,1,2, . . . ,n−1, n = [α]+1.

Lemma 5 Let α > 0, and h ∈ ACn
e (J). Then

eIα
a (e

cDα
a h)(t) = h(t)+η0 +η1(es−1)+η2(es−1)2 + . . .+ηn−1(es−1)n−1,

for each ηi ∈ R, i = 0,1,2, . . . ,n−1 and n = [α]+1.
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Definition 3 ( [9]) Let X be a Banach space and let MX be the family of bounded subsets of X .
The Kuratowski measure of noncompactness is the map µ : MX → [0,∞) defined by

µ(M) = inf{ε > 0 : M ⊆
n
∪

j=1
M j, diam(M j)≤ ε}, here M ∈MX ,

where M ∈MX . The map µ satisfies the following properties :

— µ(M) = 0 ⇐⇒ M is compact ( M is relatively compact).
— µ is equal to zero on every one element-set.
— µ(M) = µ(M).
— M1 ⊂M2⇒ µ(M1)≤ µ(M2).
— µ(Conv(M)) = µ(M).
— µ(M1 +M2)≤ µ(M1)+µ(M2).
— µ(λM) = |λ | µ(M), k ∈ R.

Lemma 6 ( [18]) If V ⊂C(J,E) is a bounded and equicontinuous set, then
(i) the function t→ µ(V (t)) is continuous on J, and

µc(V ) = sup
a≤t≤b

µ(V (t)).

(ii) µ

(∫ b

a
ω(s)ds : ω ∈V

)
≤
∫ b

a
µ(V (s))ds,

where µ is the Kuratowski measure of noncompactness and

V (s) = {ω(s) : ω ∈V}, s ∈ J.

In the sequel we will make use of the following fixed point theorems.

Theorem 7 (Darbo’s fixed point theorem [17]). Let X be a Banach space. and B be a bounded,
closed, convex and nonempty subset of X. Suppose a continuous mapping Λ : B→ B is such that
for all closed subsets D of B,

α(Λ(D))≤ kα(D),

where 0≤ k < 1. Then Λ has a fixed point in B.

Theorem 8 (Monch’s fixed point theorem [21]). Let D be a bounded, closed and convex subset
of a Banach space X such that 0 ∈ D, and let Λ be a continuous mapping of D into itself. If the
implication

V = convΛ(V ) or V = Λ(V )∪{0}⇒ µ(V ) = 0, (3)

holds for every subset V of D, then Λ has a fixed point.

3. EXISTENCE RESULTS

Let us start by defining what we mean by a solution of the problem (1)–(2).

Definition 4 A function ω ∈ ACe(J,E) is said to be a solution of the problem (1)–(2) is ω satis-
fied equation (1) on J and conditions (2).

For the existence of solutions for the problem (1)−(2), we need the following auxiliary lemmas :
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Lemma 9 Let 0 < ρ ≤ 1 and ξ : J → E be a continuous function. Then the linear fractional
boundary value problem

e
cDρ

0 ω(t) = ξ (t), for each, t ∈ J, 0 < ρ ≤ 1, (4)

c1ω(0)+ c2ω(b) = δ , (5)

where c1, c2, are real constants with c1 + c2 6= 0, and δ ∈ E has a unique solution given by

ω(t) =
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es

ξ (s)ds

− 1
(c1 + c2)

[
c2

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ξ (s)ds−δ

]
.

Proof. By integrating the formula (4), we get

ω(t) = ω0 +
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es

ξ (s)ds. (6)

By (6), we get c1ω(0) = c1ω0, and

c2ω(b) = c2ω0 +
c2

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ξ (s)ds.

Then by condition (5), we deduce

ω0 =−
1

(c1 + c2)

[
c2

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ξ (s)ds−δ

]
.

Replacing in (6), we get

ω(t) =
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es

ξ (s)ds− 1
(c1 + c2)

[
c2

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ξ (s)ds−δ

]
.
�

Lemma 10 Let a function f (t,u,v) : J×E×E→ E be continuous. Then the problem (1)–(2) is
equivalent to the problem :

ω(t) = Ψ+ eIρ

0 ϑ(t) (7)

where ϑ ∈C(J,E) satisfies the functional equation :

Ψ =
1

(c1 + c2)

[
δ − c2

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ϑ(s)ds
]

and
ϑ(t) = f

(
t,Ψ+ eIρ

0 ϑ(t),ϑ(t)
)
.

Proof. Let ω be a solution of (7). Then ω(0) = Ψ and

ω(b) = Ψ+
1

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ϑ(s)ds.

So,

c1ω(0)+ c2ω(b) = c1Ψ+

[
c2Ψ+

c2

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ϑ(s)ds
]
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= (c1 + c2)Ψ+
c2

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ϑ(s)ds

=
(c1 + c2)

(c1 + c2)

[
δ − c2

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ϑ(s)ds
]

+
c2

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ϑ(s)ds

= δ .

Then
c1ω(0)+ c2ω(b) = δ .

On the other hand, we have

e
cDρ

0 ω(t) = e
cDρ

0

(
Ψ+ eIρ

0 ϑ(t)
)
= ϑ(t)

= f
(

t,y(t), e
cDρ

0 ω(t)
)
.

Thus, ω is a solution of the problem (1)–(2). �

The following hypotheses will be used in the sequel :
(H1) The function t → f (t,u,v) is measurable on J for each u,v ∈ E, and the functions

u→ f (t,u,v) and v→ f (t,u,v) are continuous on E for a.e. t ∈ J.
(H2) There exist constants `1 > 0 and 0 < `2 < 1 such that

‖ f (t,u,v)− f (t, ū, v̄)‖ ≤ `1‖u− ū‖+ `2‖v− v̄‖, for any u,v, ū, v̄ ∈ E, t ∈ J.

Remark 1 ( [6]) Conditions (H2) is equivalent to the inequality

µ
(

f (t,B1,B2)
)
≤ `1µ(B1)+ `2µ(B2),

for any bounded sets B1,B2 ⊆ E and for each t ∈ J.

Now, we are in a position to state and prove our existence result for the problem (1)-(2) based on
Darbo’s fixed point theorem.
Set

φ =
`1

1− `2
, Θ =

(eb−1)ρ

Γ(ρ +1)

(
1+

|c2|
|c1 + c2|

)
and f = sup

t∈J
‖ f (t,0,0)‖.

Theorem 11 Assume (H1) and (H2) holds. If

φΘ < 1, (8)

then BVP (1)-(2) has at least one solution on J.

Proof. Transform the problem (1)-(2) into a fixed point problem. Define the operator Λ :C(J,E)→
C(J,E) by

Λ(ω)(t) =
δ

c1 + c2
+

1
Γ(ρ)

∫ t

0
(et − es)ρ−1es

ϑ(s)ds

− c2

(c1 + c2)Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ϑ(s)ds,

(9)
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where ϑ ∈C(J,E) such that
ϑ(t) = f (t,ω(t),ϑ(t)).

Step 1 : Λ is continuous.
Let {un} be a sequence such that un→ u in C(J,E). Then, for each t ∈ J :

‖Λ(un)(t)−Λ(u)(t)‖ ≤ 1
Γ(ρ)

∫ t

0
(et − es)ρ−1es‖ϑn(s)−ϑ(s)‖ds

+
|c2|

|c1 + c2|Γ(ρ)

∫ b

0
(eb− es)ρ−1es‖ϑn(s)−ϑ(s)‖ds,

where ϑn,ϑ ∈C(J,E) such that

ϑn(t) = f (t,un(t),ϑn(t)), and ϑ(t) = f
(
t,u(t),ϑ(t)

)
.

Since un→ u as n→ ∞ and f is continuous, then by Lebesgue dominated convergence theorem,
we have ‖ϑn (t)−ϑ (t)‖→ 0 as n→ ∞, which leads to

‖Λ(un)(t)−Λ(u)(t)‖
∞
→ 0 as n→ ∞.

Consequently, Λ is continuous. Before the next step, we consider the ball BR = {u ∈ C (J,E) :
‖u‖∞ ≤ R}, such that

R≥
[
|δ |

|c1 + c2|
+

f
1− `2

Θ

][
1−Θφ

]−1
, (10)

Step 2 : Λ(BR)⊂ BR. Let u ∈ BR we show that Λu ∈ BR. We have, for each t ∈ J

‖Λu(t)‖ ≤ |δ |
|c1 + c2|

+
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es‖ϑ(s)‖ds

+
|c2|

|c1 + c2|Γ(ρ)

∫ b

0
(eb− es)ρ−1es‖ϑ(s)‖ds.

(11)

By condition (H2), for each t ∈ J, we have that

‖ϑ(t)‖ = ‖ f (t,u(t),ϑ(t))‖

≤ ‖ f (t,u(t),ϑ(t))− f (t,0,0)‖+‖ f (t,0,0)‖

≤ `1‖u(t)|+ `2‖ϑ(t)‖+‖ f (t,0,0)‖

≤ `1R+ `2‖ϑ(t)‖+ f .

Then

‖ϑ(t)‖ ≤ `1R+ f
1− `2

= φR+
f

1− `2
:= M̃.
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Thus, (10) and (11) implies that

‖Λu(t)‖ ≤ |δ |
|c1 + c2|

+

(
φR+

f
1− `2

)
(eb−1)ρ

Γ(ρ +1)

+

(
φR+

f
1− `2

)
|c2|(eb−1)ρ

|c1 + c2|Γ(ρ +1)

≤ |δ |
|c1 + c2|

+
φ(eb−1)ρ

Γ(ρ +1)

[
1+

|c2|
|c1 + c2|

]
R

+

(
f

1− `2

)
(eb−1)ρ

Γ(ρ +1)

[
1+

|c2|
|c1 + c2|

]

≤ |δ |
|c1 + c2|

+φΘR+

(
f

1− `2

)
Θ

≤ R.

Then ‖Λu‖∞ ≤ R. Thus Λ(BR)⊂ BR.

Step 3 : Λ(BR) is bounded and equicontinuous.
Let τ1,τ2 ∈ J, τ1 < τ2, and let u ∈ BR. Then

‖Λ(u)(τ2)−Λ(u)(τ1)‖ =

∥∥∥∥ 1
Γ(ρ)

∫
τ1

0

[
(eτ2 − es)ρ−1− (eτ1 − es)ρ−1

]
es

ϑ(s)ds

+
1

Γ(ρ)

∫
τ2

τ1

(eτ2 − es)ρ−1es
ϑ(s)ds

∥∥∥∥
≤ 1

Γ(ρ)

∫
τ1

0

∣∣∣(eτ2 − es)ρ−1− (eτ1 − es)ρ−1
∣∣∣es‖ϑ(s)‖ds

+
1

Γ(ρ)

∫
τ2

τ1

∣∣∣(eτ2 − es)ρ−1
∣∣∣es‖ϑ(s)‖ds

≤ M̃
Γ(ρ +1)

[
(eτ1 −1)ρ − (eτ2 −1)ρ +2(eτ2 − eτ1)ρ

]
.

As τ1→ τ2, the right-hand side of the above inequality tends to zero.

Step 4 : The operator Λ : BR→ BR is a contraction.
Let V ⊂ BR and t ∈ J, then we have

µ(Λ(V )(t)) = µ

(
{(Λy)(t),y ∈V}

)
≤ 1

Γ(ρ)

{∫ t

0
(et − es)ρ−1es

µ(ϑ(s))ds,y ∈V
}
.
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Then for each s ∈ J, the Remark 1 implies that

µ

(
{ϑ(s),y ∈V}

)
= µ

(
{ f (s,y(s),ϑ(s)),y ∈V}

)
≤ `1µ

(
{y(s),y ∈V}

)
+ `2µ

(
{ϑ(s),y ∈V}

)
.

Thus,

µ

(
{ϑ(s),y ∈V}

)
≤ `1

1− `2
µ

(
{y(s),y ∈V}

)
≤ φ µ

(
{y(s),y ∈V}

)
.

Then

µ

(
Λ(V )(t)

)
≤ φ

Γ(ρ)

{∫ t

0
(et − es)ρ−1es {µ (y(s))}ds, y ∈V

}

≤ φ µc(V )

Γ(ρ)

∫ t

0
(et − es)ρ−1esds

≤ φ(eb−1)ρ

Γ(ρ +1)
µc(V ).

Therefore

µc(ΛV ) ≤ φ(eb−1)ρ

Γ(ρ +1)
µc(V ).

So, by (8), the operator Λ is a contraction. As a consequence of Theorem 7, we deduce that Λ

has a fixed point, which is solution to the problem (1)− (2). This completes the proof. �

The following hypotheses will be used in the sequel :
(H4) There exists a continuous function p : J→ [0,∞) such that

‖ f (t,u,v)‖ ≤ p(t)
1+‖u‖+‖v‖

, for a.e. t ∈ J and u,v ∈ E.

(H5) For each bounded set B⊂ E and for each t ∈ J, we have

µ

(
f
(
t,B, e

cDα
sk

B
))
≤ p(t)µ (B) .

where e
cDα

sk
B =

{e
cDα

sk
u : u ∈ B

}
.

Set

p∗ := sup
t∈J

p(t) , ρ =
(eb−1)ρ

Γ(ρ +1)
.

The second existence is based on the concept of measure of noncompactness and Mönch’s
fixed point theorem.

Theorem 12 Assume that (H1), (H4) and (H5) are satisfied. If

p∗ρ < 1, (12)

then the BVP (1)-(2) has at least one solution on J.

ICMA2021-9



Proc. of the Int. Conference on Mathematics and Applications, Dec 7-8 2021, Blida

Proof. Consider the operator Λ defined in (9). We shall show that Λ satisfies the assumption of
Mönch’s fixed point theorem. The proof will be given in several steps.

Step 1 : Λ is continuous.
Let {un} be a sequence such that un→ v in C(J,E). Then, for each t ∈ J, we have,

‖Λ(un)(t)−Λ(u)(t)‖ ≤ 1
Γ(ρ)

∫ t

0
(et − es)ρ−1es‖ϑn(s)−ϑ(s)‖ds

+
|c2|

|c1 + c2|Γ(ρ)

∫ b

0
(eb− es)ρ−1es‖ϑn(s)−ϑ(s)‖ds,

where ϑn,ϑ ∈C(J,E) such that

ϑn(t) = f (t,un(t),ϑn(t)) and ϑ(t) = f
(
t,u(t),ϑ(t)

)
.

Since un→ u as n→ ∞ and f is continuous, then by Lebesgue dominated convergence theorem,
we have ‖ϑn (t)−ϑ (t)‖→ 0 as n→ ∞, which leads to

‖Λ(un)(t)−Λ(u)(t)‖
∞
→ 0 as n→ ∞.

Therefore Λ is continuous. Before the next step, we consider the ball BR2 = {y ∈C (J,E) :
‖u‖

∞
≤ R2} where

R2 ≥
|δ |

|c1 + c2|
+ p∗Θ.

Step 2 : Prove that for any u ∈ BR2 , Λ maps BR2 into itself.

‖Λu(t)‖ ≤ |δ |
|c1 + c2|

+
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es‖ϑ(s)‖ds

+
|c2|

|c1 + c2| Γ(ρ)

∫ b

0
(eb− es)ρ−1es‖ϑ(s)‖ds

≤ |δ |
|c1 + c2|

+
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es‖p(s)‖ds

+
|c2|

|c1 + c2| Γ(ρ)

∫ b

0
(eb− es)ρ−1es‖p(s)‖ds

≤ |δ |
|c1 + c2|

+
p∗

Γ(ρ)

∫ t

0
(et − es)ρ−1esds+

|c2|p∗

|c1 + c2| Γ(ρ)

∫ b

0
(eb− es)ρ−1esds

≤ |δ |
|c1 + c2|

+
p∗(eb−1)ρ

Γ(ρ +1)
+

p∗ |c2| (eb−1)ρ

|c1 + c2| Γ(ρ +1)
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≤ |δ |
|c1 + c2|

+ p∗Θ.

Hence ‖Λu‖
∞
≤ R2, for each t ∈ J. This implies that Λ transforms the ball BR2 into itself.

Step 3 : Λ(BR2) is bounded.
Since Λ(BR2)⊆ BR2 and BR2 is bounded, then Λ(BR2) is bounded.

Step 4 : Λ(BR2) is equicontinuous.

Let τ1,τ2 ∈ J, τ1 < τ2, and let u ∈ BR. Then

‖Λ(u)(τ2)−Λ(u)(τ1)‖ =

∥∥∥∥ 1
Γ(ρ)

∫
τ1

0

[
(eτ2 − es)ρ−1− (eτ1 − es)ρ−1

]
es

ϑ(s)ds

+
1

Γ(ρ)

∫
τ2

τ1

(eτ2 − es)ρ−1es
ϑ(s)ds

∥∥∥∥
≤ 1

Γ(ρ)

∫
τ1

0

∣∣∣(eτ2 − es)ρ−1− (eτ1 − es)ρ−1
∣∣∣es‖ϑ(s)‖ds

+
1

Γ(ρ)

∫
τ2

τ1

∣∣∣(eτ2 − es)ρ−1
∣∣∣es‖ϑ(s)‖ds

≤ p∗

Γ(ρ +1)

[
(eτ1 −1)ρ − (eτ2 −1)ρ +2(eτ2 − eτ1)ρ

]
.

As τ1→ τ2, the right-hand side of the above inequality tends to zero. Hence, Λ(BR2) is equicon-
tinuous.

Step 5 : The implication (3) holds.
Now let V be a subset of BR2 such that V ⊂ conv(Λ(V )∪{0}).V is bounded and equicontinuous
and therefore the function t→ v(t) = µ(V (t)) is continuous on J.
By using the Lemma 6 and Properties of measure of noncompactness µ, we have, for each t ∈ J,

v(t) ≤ µ(Λ(V )(t)∪{0})

≤ µ(Λ(V )(t))

≤ 1
Γ(ρ)

∫ t

0
(et − es)ρ−1es p(s)µ (V (s))ds

≤ p∗

Γ(ρ)

∫ t

0
(et − es)ρ−1esv(s)ds

≤ p∗ ρ ‖v‖
∞
.

Therefore,
‖v‖

∞
≤ p∗ ρ ‖v‖

∞
.
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From (12), we get v(t) = 0 for each t ∈ J, and then V (t) is relatively compact in E. In view of the
Ascoli-Arzelà theorem, V is relatively compact in BR2 . Applying now Theorem 8 we conclude
that Λ has a fixed point u ∈ BR2 , which is solution to the problem (1)− (2). This completes the
proof. �

4. ULAM-HYERS-RASIAS STABILITY

In this section, we are concerned with Ulam-Hyers-Rasias (U-H-R) stability. So, we adopt
the definition in Rus [22] to our problem (1)-(2).

Definition 5 Equation (1) is U-H-R stable with respect to ϕ ∈ C(J,R+) if there exists a real
number c f > 0 such that for each ε > 0 and for each solution ϖ ∈ ACe(J,E) of the inequality

‖e
cDρ

0 ϖ(t)− f (t,ϖ(t), e
cDρ

0 ϖ(t))‖ ≤ εϕ(t), t ∈ J, (13)

there exists a solution ω ∈ ACe(J,E) of problem (1)-(2) with

‖ϖ(t)−ω(t)‖E ≤ c f εϕ(t), t ∈ J.

Remark 2 A function ϖ ∈ ACe(J,E) is a solution of the inequality (13) if and only if there exists
a function g ∈C(J,E) (which depend on ϖ) such that

(i) ‖g(t)‖ ≤ εϕ(t), for t ∈ J.
(ii) e

cDρ

0 ϖ(t) = f (t,ϖ(t), e
cDρ

0 ϖ(t))+g(t), for t ∈ J.

Theorem 13 Assume (H1), (H2), (8) and
(H6) There exists an increasing function ϕ ∈C(J,R+) and there exists λϕ > 0 such that for

each t ∈ J, we have
eIρ

0 ϕ(t)≤ λϕ ϕ(t)

are satisfied. Then the problem (1)-(2) is U-H-R stable with respect to ϕ .

Proof. Let ϖ be a solution of the following inequality

‖e
cDρ

0 ϖ(t)− f (t,ϖ(t), e
cDρ

0 ϖ(t))‖ ≤ εϕ(t), t ∈ J. (14)

Let us denote by ω the unique solution of the problem

e
cDρ

0 ω(t) = f (t,ω(t), e
cDρ

0 ω(t)), for each t ∈ J, 0 < ρ ≤ 1,

ω(0) = ϖ(0), ω(b) = ϖ(b).

By using Lemma 10, we have

ω(t) = Ψω +
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es

ϑω (s)ds,

where ϑω ∈C(J,E) such that

ϑω (t) = f (t,Ψω + eIρ

0 ϑω (t),ϑω (t))

and

Ψω =
1

(c1 + c2)

[
δ − c2

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ϑω (s)ds
]
.

By integration of the formula (14), we obtain∥∥∥∥ϖ(t)−Ψϖ −
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es

ϑϖ (s)ds
∥∥∥∥ ≤ ε

Γ(ρ)

∫ b

0
(eb− es)ρ−1es

ϕ(s)ds
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≤ ελϕ ϕ(t). (15)

We have, for each t ∈ J

‖ϖ(t)−ω(t)‖ =

∥∥∥∥ϖ(t)−Ψω −
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es

ϑω (s)ds
∥∥∥∥

=

∥∥∥∥ϖ(t)−Ψϖ −
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es

ϑϖ (s)ds

+
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es (ϑϖ (s)−ϑω (s))ds

∥∥∥∥
≤

∥∥∥∥ϖ(t)−Ψϖ −
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es

ϑϖ (s)ds
∥∥∥∥

+
1

Γ(ρ)

∫ t

0
(et − es)ρ−1es ‖ϑϖ (s)−ϑω (s)‖ds.

Indeed, by (H2), we have, for each t ∈ J

‖ϑϖ (t)−ϑω (t)‖ = ‖ f (t,ϖ(t),ϑϖ (t))− f (t,ω(t),ϑω (t))‖

≤ `1‖ϖ(t)−ω(t)‖+ `2‖ϑϖ (t)−ϑω (t)‖.

Then
‖ϑϖ (t)−ϑω (t)‖ ≤ φ‖ϖ(t)−ω(t)‖. (16)

Using (15) and (16), we obtain

‖ϖ(t)−ω(t)‖ ≤ ελϕ ϕ(t)+
φ

Γ(ρ)

∫ t

0
(et − es)ρ−1es ‖ϖ(s)−ω(s)‖ds.

Then

‖ϖ(t)−ω(t)‖ ≤ ελϕ ϕ(t)+
φ ‖ ϖ −ω ‖E

Γ(ρ)

∫ t

0
(et − es)ρ−1esds

≤ ελϕ ϕ(t)+
φ ‖ ϖ −ω ‖E (eb−1)ρ

Γ(ρ +1)
.

So

‖ ϖ −ω ‖E ≤ ελϕ ϕ(t)+
φ ‖ ϖ −ω ‖E (eb−1)ρ

Γ(ρ +1)
.

Thus,

||ϖ −ω||E
[

1− φ(eb−1)ρ

Γ(ρ +1)

]
≤ ελϕ ϕ(t).

From the condition (8), it follows that

||ϖ −ω||E ≤ ελϕ ϕ(t)
[

1− φ(eb−1)ρ

Γ(ρ +1)

]−1

.
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Then, for each t ∈ J

‖ϖ(t)−ω(t)‖E ≤ λϕ εϕ(t)
[

1− φ(eb−1)ρ

Γ(ρ +1)

]−1

:= c f εϕ(t).

Therefore, the problem (1)-(2) is U-H-R stable with respect to ϕ. This completes the proof. �

Remark 3 Our results for the boundary value problem (1)-(2) remain true for the following
cases :

• Initial value problem : c1 = 1,c2 = 0 and δ arbitrary.

• Terminal value problem : c1 = 0,c2 = 1 and δ arbitrary.

• Anti-periodic problem : c1 = c2 6= 0 and δ = 0.

However, our results are not applicable for the periodic problem, i.e. for c1 = 1, c2 = −1, and
δ = 0.

5. AN EXAMPLE

In this section, we will give an example to illustrate our main results. Let

E = l1 =

{
ω = (ω1,ω2, . . . ,ωn, . . .) :

∞

∑
n=1
|ωn|< ∞

}
be the Banach space with the norm

‖ω‖E =
∞

∑
n=1
|ωn|.

Consider the following boundary value problem for the nonlinear implicit fractional differential
equation :

e
cD

1
2
0 ωn(t) =

(3+ |ωn(t)|+ |cD
1
2 ωn(t)|)

3et+200(1+ |ωn(t)|+ |cD
1
2 ωn(t)|)

, for each, t ∈ [0,1], (17)

ωn(0)+ωn(1) = 1. (18)

where J = [0,1] , b = 1, c1 = c2 = δ = 1, ω = (ω1,ω2, . . . ,ωn, . . .) , f = ( f1, f2, . . . , fn, . . .) ,
e
cD

1
2
0 ω =

(
e
cD

1
2
0 ω1,

e
cD

1
2
0 ω2, . . . ,

e
cD

1
2
0 ωn, . . .

)
and

f (t,u,v) =
(3+ ||u||+ ||v||)

3et+200(1+ ||u||+ ||v||)
, t ∈ [0,1], u,v ∈ E.

For any u,v, ū, v̄ ∈ E and t ∈ [0,1], we can show that

|| f (t,u,v)− f (t, ū, v̄)|| ≤ 2
3e200

(
‖u− ū‖E +‖v− v̄‖E

)
.

Thus, for `1 = `2 =
2

3e200 , we have

φΘ =
(eb−1)ρ

Γ(ρ +1)

(
1+

|µ|
|λ +µ|

)
`1

1− `2
=

√
e−1

π
× 6

3e200−2
≈ 2.047×10−87 < 1,
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Hence, from Theorem 11. The boundary value problem (17)-(18) has at least one solution on
[0,1] . On the other hand, with the choice of ψ (t) = et −1. We find that

eI
1
2

0 ψ (t) =
4

3
√

π

√
et −1

(
et −1

)
≤ 4
√

e
3
√

π
ψ (t) .

Thus, (H6) is satisfied with λψ =
4
√

e
3
√

π
. Therefore, From Theorem 13, the BVP (17)-(18) is

U-H-R stable with respect to ψ.
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