Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

CONTROL OF AN EULER-BERNOULLI BEAM WITH A
NONLINEAR TENSION AND AN END-MASS

Billal Lekdim'? Ammar Khemmoudj*

'Department of Mathematics, University Ziane Achour of Djelfa,
Djelfa 17000, Algeria
Laboratory of SDG, Faculty of Mathematics, University of Science
and Technology Houari Boumediene, P.O. Box 32, El-Alia 16111,
Bab Ezzouar, Algiers, Algeria

ABSTRACT

In this article, we intend to study the vibrations of a nonlinear Euler-Bernoulli beam without
internal damping, fixed at one end and a mass attached at the other end. By applying a suitable
control at the free end, we can quickly dampen these vibrations. In fact, we give the result of the
exponential stability of the solutions, and we base our method on the multiplier technique.
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1. INTRODUCTION

In this paper, we consider a Euler-Bernoulli beam with a nonlinear tension and an mass
attached to its free end, The beam is modeled through the following equation :

PWit + EIwsy — Twyy — E;ETAWEWXX =0, x€(0,L),t >0,

w(0,7) = wy(0,1) = wxx(L,t) =0,
Mwy(L,t) — EIwy(Lyt) + Twy(Lyt) + BAwi (L) =U(t) >0,

w(x,0) = w0 (x), we(x,0) = w! (x), xe(0,L),

©))

where w(x,t) represents the transverse displacements of the beam at a position x for time ¢, p > 0
is the uniform mass per unit length of the beam, and L is the length of the beam. Also, T is the
axial tension of the beam, E1 is the bending stiffness, EA is the axial stiffness, and the control
force U (r) will be specified later.

Recent years have witnessed an increasing cognizance of the problem of controlling thin-
ner structures in various industries, especially slender ones. Domains like transportation and
construction have particularly benefited from it. The purpose behind attempts to control these
structures is to suppress or at least reduce transverse vibrations which often occur due to the
irregular material property or environmental disturbances.

The issue of stability and stabilization has been discussed by many researchers who relied in
their studies on several damping terms that induce dissipation. For works that relied on internal
damping in order to achieve stability of the system, [[1,[7 9} [10, 111,12} |17, [18]] can offer decent
insights.

As for the boundary stabilization case, we have [3, 1411814} 16]. Furthermore, for studies that
tackle the stabilization and control of Euler-Bernoulli beams with damping, we may mention the
works of Gao et al. [2]], Karagiannis et al. [6] and Mileti¢ et al. [13].
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We note also that in [5]] He et al. adopted the linear system of (I with internal viscous
damping term cw;. Thus, they established exponential stability under a robust control.

Seghour et al. [13]] investigated the linear system of (I with the viscoelastic damping term
Jo h(t — 5)Wxxxx (x, 5)ds. The result was establishing an exponential stability result under a nonli-
near control.

The main contribution of this work can be summarized in achieving an exponential stability
result result strictly with linear boundary control and without internal damping for the nonlinear
problem.

2. PRELIMINARY

In this paper, ||.|| represents the norm and (.;.) is the inner product of L?(0,L). We introduce
the energy associated to (T) by
p M EI T EA
E) = Sl S (L) + S Pl + 5 P+ S w2 @

Observe that this is the usual classical energy. The first two terms represent kinetic energy while
the rest of the terms represent potential energy.

Control

The control objective is to reduce the free transverse vibrations of the beam. Lyapunov’s
direct method is used to construct a suitable boundary control at the free boundary of the flexible
beam.

To stabilize system (T))), we propose the following control :

U(t) = —kiw(L,t) —kywy (L,t), 3)
where k| and k; are positive constants.
Lemma 1 The energy functional @) satisfies

E'(t)=w/(L,)U({),  Vt>0. )
Proof. Taking the inner product of the first equation of (I) with w; in L2(07L), integrating by
parts and taking into account the boundary, we get (@). m

3. STABILITY RESULT
In order to prove the energy decay result. let us define the Lyapunov functional by
L) = E@0)+BV(1), 5)

where f3 is a positive constant and

V() = (xwy,wy) + LMwowy (L, 1) + Lkgw?(L,1). (6)
Proposition 2 There exist two positive constants a and b, such that

ak(r) < .Z(t) <bE(t), vt >0, 7
ie. E(t) ~ Z(t).
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Proof. This Proposition can be proved by applying Young, Cauchy-Schwarz and Poincaré’s in-
equalities, as follows

L L LM LM
VOL < Sl 5l + 50w + (5 + i) e

2 2
L L LM LM
< Sl Sl + B0+ (5 + e ) Ll
OE(t), (®)
where@:max{ o L, LML

Considering B < 1/6 and using a proper selections, we can get (7) with a = 1— 6 and
b=1+p60.m

Lemma 3 The derivative of Vy(t) satisfies along solutions of system (I)

1 3EI 3EA
Vi(t) < **||Wz||2 H xx||2**|| tz*TH w2||% + MLw,wiy(L,1)
L Lk TL Lk EAL
+{2+?} wi(L,1) — {7*75} L, )*TW?C(LJ) 9

Proof. By differentiating V;, taking into account system () and integrating by parts, we get

L 3EI 3EA
Vi) = szz(Lt) 7||Wt||2 | warl[* = —||wx\|2——|\ we|?

TL EAL

—7w§(L,t)—Tw (L,t) + MLw,wy(L,t) — Lkywowy(L,1).  (10)

After applying the inequality of young to the last term of the above equation, for § > 0, we obtain
©). =

Theorem 4 The energy E(t) satisfies along the solution of system ()
E()<Ae™, 120, (1)
where A and A are two positive constants.

Proof. Taking the derivative of .Z(r), (), @) and (9), and picking k, = ML, we obtain

L'(t) < —cE(t). (12)
Using equivalence relation (7), the above inequality becomes
L) <=3 20). (13)
which gives
Z(t) < ZL(0)e . (14)
By reusing relation (7), we find (TI)), in which A = ( ) and A = ;.

4. CONCLUSIONS

This research succeeded in obtaining a linear boundary control in order to achieve the expo-
nential stability of the nonlinear Euler-Bernoulli beam under free vibrations.
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