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ABSTRACT

In this paper we introduce Besov-type spaces with variable smoothness and integrability. We
show that these spaces are characterized by the ϕ-transforms in appropriate sequence spaces and
we obtain atomic decompositions for these spaces. Moreover the Sobolev embeddings for these
function spaces are obtained.

1. INTRODUCTION

Besov spaces of variable smoothness and integrability, Bα(·)
p(·),q(·), initially appeared in the

paper of Almeida and Hästö [1]. Several basic properties were established, such as the Fourier
analytical characterization and Sobolev embeddings. When p,q,α are constants they coincide
with the usual function spaces Bα

p,q. Later, [7] characterized these spaces by local means and es-
tablished the atomic characterization. Afterwards, Kempka and Vybíral [16] characterized these
spaces by the ball means of differences and also by local means, see [14] for the duality of
Bα(·)

p(·),q(·) spaces.

Variable Besov-type spaces have been introduced in [9] and [10], where their basic pro-
perties are given, such as the Sobolev type embeddings and that under some conditions these
spaces are just the variable Besov spaces. For constant exponents, these spaces unify and ge-
neralize many classical function spaces including Besov spaces, Besov-Morrey spaces (see, for
example, [25, Corollary 3.3]). Independently, D. Yang, C. Zhuo and W. Yuan, [23] studied these
function spaces where several properties are obtained such as atomic decomposition and the
boundedness of trace operator. Also, Tyulenev [20], [21] has studied a new function spaces of
variable smoothness. Triebel-Lizorkin spaces with variable smoothness and integrability Fα(·)

p(·),q(·)
were introduced in [4]. They proved a discretization by the so called ϕ-transform. Also atomic
and molecular decompositions of these function spaces are obtained and used it to derive trace
results. Subsequently, Vybiral [22] established Sobolev-Jawerth embeddings of these spaces.
In [24], Triebel-Lizorkin type spaces of variable smoothness and integrability were introduced
and studied. Their function spaces generalize classical Triebel-Lizorkin-type spaces and Triebel-
Lizorkin spaces with variable smoothness and integrability.

The motivation to study such function spaces comes from applications to other fields of
applied mathematics, such that fluid dynamics and image processing, see, for example, [17].

The main aim of this paper is to present another Besov-type spaces with variable smoothness
and integrability which covers Besov-type spaces with fixed exponents. We establish their ϕ-
transform characterization in the sense of Frazier and Jawerth. We also characterize these spaces
by smooth atoms and give some basic properties and Sobolev-type embeddings.
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2. PRELIMINARIES

As usual, we denote by Rn the n-dimensional real Euclidean space, N the collection of all
natural numbers and N0 = N∪{0}. The letter Z stands for the set of all integer numbers. The
expression f . g means that f ≤ cg for some independent constant c (and non-negative functions
f and g), and f ≈ g means f . g . f . As usual for any x ∈ R, [x] stands for the largest integer
smaller than or equal to x.

By supp f we denote the support of the function f , i.e., the closure of its non-zero set. If
E ⊂ Rn is a measurable set, then |E| stands for the (Lebesgue) measure of E and χE denotes its
characteristic function.

The Hardy-Littlewood maximal operator M is defined on L1
loc(R

n) by

M f (x) := sup
r>0

1
|B(x,r)|

∫
B(x,r)

| f (y)|dy

and
MB( f ) :=

1
|B|

∫
B
| f (y)|dy.

The symbol S (Rn) is used in place of the set of all Schwartz functions on Rn. We denote by
S ′(Rn) the dual space of all tempered distributions on Rn. The Fourier transform of a tempered
distribution f is denoted by F f while its inverse transform is denoted by F−1 f .

For v ∈Z and m = (m1, ...,mn)∈Zn, let Qv,m be the dyadic cube in Rn, Qv,m = {(x1, ...,xn) :
mi ≤ 2vxi < mi +1, i = 1,2, ...,n}. For the collection of all such cubes we use

Q := {Qv,m : v ∈ Z,m ∈ Zn}.

For each cube Q, we denote its center by cQ, its lower left-corner by xQv,m = 2−vm of Q = Qv,m
and its side length by l(Q). For r > 0, we denote by rQ the cube concentric with Q having the
side length rl(Q). Furthermore, we put vQ =− log2 l(Q) and v+Q = max(vQ,0).

For v ∈ Z, ϕ ∈S (Rn) and x ∈ Rn, we set ϕ̃(x) := ϕ(−x), ϕv(x) := 2vnϕ(2vx), and

ϕv,m(x) := 2v n
2 ϕ(2vx−m) = |Qv,m|

1
2 ϕv(x− xQv,m) if Q = Qv,m.

By c we denote generic positive constants, which may have different values at different
occurrences. Although the exact values of the constants are usually irrelevant for our purposes,
sometimes we emphasize their dependence on certain parameters (e.g. c(p) means that c depends
on p, etc.). Further notation will be properly introduced whenever needed.

The variable exponents that we consider are always measurable functions p on Rn with
range in [c,∞[ for some c > 0. We denote the set of such functions by P0. The subset of variable
exponents with range [1,∞[ is denoted by P . We use the standard notation p− := ess-inf

x∈Rn
p(x)

and p+ := ess-sup
x∈Rn

p(x).

The variable exponent modular is defined by

ρp(·)( f ) :=
∫
Rn

ρp(x)(| f (x)|)dx,

where ρp(t) = t p. The variable exponent Lebesgue space Lp(·) consists of measurable functions
f on Rn such that ρp(·)(λ f )< ∞ for some λ > 0. We define the Luxemburg (quasi)-norm on this
space by the formula ∥∥ f

∥∥
p(·) := inf

{
λ > 0 : ρp(·)

( f
λ

)
≤ 1
}
.
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A useful property is that
∥∥ f
∥∥

p(·) ≤ 1 if and only if ρp(·)( f ) ≤ 1, see, for example, [5], Lemma
3.2.4.

Let p,q ∈P0. The mixed Lebesgue-sequence space `q(·)(Lp(·)) is defined on sequences of
Lp(·)-functions by the semi-modular

ρ`q(·)(Lp(·))(( fv)v) := ∑
v

inf
{

λv > 0 : ρp(·)

( fv

λ

1
q(·)

v

)
≤ 1
}
.

The (quasi)-norm is defined from this as usual :∥∥( fv)v
∥∥
`q(·)(Lp(·))

:= inf
{

µ > 0 : ρ`q(·)(Lp(·))

( 1
µ
( fv)v

)
≤ 1
}
. (1)

If q+ < ∞, then we can replace (1) by the simpler expression

ρ`q(·)(Lp(·))(( fv)v) := ∑
v

∥∥| fv|q(·)∥∥ p(·)
q(·)

.

Furthermore, if p and q are constants, then `q(·)(Lp(·)) = `q(Lp). The case p :=∞ can be included
by replacing the last semi-modular by

ρ`q(·)(L∞)(( fv)v) := ∑
v

∥∥ | fv|q(·)∥∥∞
.

It is known, cf. [1, Theorem 3.6] and [15, Theorem 1], that `q(·)(Lp(·)) is a norm if q(·) ≥ 1
is constant almost everywhere (a.e.) on Rn and p(·) ≥ 1, or if 1

p(x) +
1

q(x) ≤ 1 a.e. on Rn, or if
1≤ q(x)≤ p(x)≤ ∞ a.e. on Rn.

We say that g : Rn→R is locally log-Hölder continuous, abbreviated g∈Clog
loc , if there exists

clog(g)> 0 such that

|g(x)−g(y)| ≤
clog(g)

log(e+ 1
|x−y| )

(2)

for all x,y ∈ Rn. We say that g satisfies the log-Hölder decay condition, if there exists g∞ ∈ R
and a constant clog > 0 such that

|g(x)−g∞| ≤
clog

log(e+ |x|)

for all x ∈ Rn. We say that g is globally-log-Hölder continuous, abbreviated g ∈Clog, if it is lo-
cally log-Hölder continuous and satisfies the log-Hölder decay condition. The constants clog(g)
and clog are called the locally log-Hölder constant and the log-Hölder decay constant, respecti-

vely. We note that all functions g ∈Clog
loc always belong to L∞.

We define the following class of variable exponents

P log :=
{

p ∈P :
1
p
∈Clog

}
,

were introduced in [6, Section 2]. We define 1
p∞

:= lim|x|→∞
1

p(x) and we use the convention
1
∞
= 0. Note that although 1

p is bounded, the variable exponent p itself can be unbounded. It was

shown in [5], Theorem 4.3.8 that M : Lp(·)→ Lp(·) is bounded if p ∈P log and p− > 1, see also
[6], Theorem 1.2. Also if p ∈P log, then the convolution with a radially decreasing L1-function
is bounded on Lp(·) : ∥∥ϕ ∗ f

∥∥
p(·) ≤ c

∥∥ϕ
∥∥

1

∥∥ f
∥∥

p(·).
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We also refer to the papers [2] and [3], where various results on maximal function in variable
Lebesgue spaces were obtained.

It is known that for p ∈P log we have∥∥χB
∥∥

p(·)
∥∥χB

∥∥
p′(·) ≈ |B|. (3)

with constants only depending on the log-Hölder constant of p (see, for example, [5, Section
4.5]). Here p′ denotes the conjugate exponent of p given by 1

p(·) +
1

p′(·) = 1.

Recall that ηv,m(x) := 2nv(1+2v |x|)−m, for any x ∈Rn, v ∈N0 and m > 0. Note that ηv,m ∈
L1 when m > n and that

∥∥ηv,m
∥∥

1 = cm is independent of v, where this type of function was
introduced in [13] and [5].

3. MAIN RESULTS

We set ∥∥( fv)v
∥∥
`q(·)(Lτ(·)

p(·))
:= sup

P∈Q

∥∥∥( fv
|P|τ(·)

χP

)
v≥v+P

∥∥∥
`q(·)(Lp(·))

,

where, vP =− log2 l(P) and v+P = max(vP,0).

The following lemma is the `q(·)(Lτ(·)
p(·))-version of Lemma 4.7 from Almeida and Hästö [1]

(we use it, since the maximal operator is in general not bounded on `q(·)(Lp(·)), see [1, Example
4.1]).

Lemma 1 Let τ ∈Clog
loc , τ− > 0, p ∈P log, q ∈P log

0 with 0 < q− ≤ q+ < ∞ and τ+ < (τ p)−.
For any m large enough, there exists c > 0 such that∥∥(ηv,m ∗ fv)v

∥∥
`q(·)(Lτ(·)

p(·))
≤ c
∥∥( fv)v

∥∥
`q(·)(Lτ(·)

p(·))

for any ( fv)v ∈ `q(·)(Lτ(·)
p(·)).

Let L̃τ(·)
p(·) be the collection of functions f ∈ Lp(·)

loc (Rn) such that

∥∥ f
∥∥

L̃τ(·)
p(·)

:= sup
∥∥∥ f χP

|P|τ(·)
∥∥∥

p(·)
< ∞, p ∈P0, τ : Rn→ R+,

where the supremum is taken over all dyadic cubes P with |P| ≥ 1. Notice that

∥∥ f
∥∥

L̃τ(·)
p(·)

≤ 1⇔ sup
P∈Q,|P|≥1

∥∥∥∣∣∣ f
|P|τ(·)

∣∣∣q(·)χP

∥∥∥
p(·)/q(·)

≤ 1. (4)

Recall that θv = 2vnθ (2v·) ,v ∈ Z.

Lemma 2 Let v ∈ Z, τ ∈Clog
loc , τ− > 0, p ∈P log

0 and θ ,ω ∈S (Rn) with suppFω ⊂ B(0,1).
For any f ∈S ′(Rn) and any dyadic cube P with |P| ≥ 1, we have∥∥∥θv ∗ωv ∗ f

|P|τ(·)
χP

∥∥∥
p(·)
≤ c
∥∥ωv ∗ f

∥∥
L̃τ(·)

p(·)

,

such that the right-hand side is finite, where c > 0 is independent of v and l(P).
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Lemma 3 Let α,τ ∈Clog
loc , τ− ≥ 0 and p,q ∈P log

0 with 0 < q− ≤ q+ < ∞. Let ( fk)k∈N0 be a
sequence of measurable functions on Rn. For all v ∈ N0 and x ∈ Rn, let

gv(x) :=
∞

∑
k=0

2−|k−v|δ fk(x).

Then there exists a positive constant c, independent of ( fk)k∈N0 such that∥∥(gv)v
∥∥
`q(·)(Lτ(·)

p(·))
≤ c
∥∥( fv)v

∥∥
`q(·)(Lτ(·)

p(·))
, δ > 0.

The proof of Lemma 3 can be obtained by the same arguments used in [10, Lemma 2.10]
and [16, Lemma 8].

we present the Fourier analytical definition of Besov-type spaces of variable smoothness and
integrability and we prove their basic properties in analogy to the Besov-type spaces with fixed
exponents. Select a pair of Schwartz functions Φ and ϕ such that

suppFΦ⊂ B(0,2) and |FΦ(ξ )| ≥ c if |ξ | ≤ 5
3

(5)

and
suppFϕ ⊂ B(0,2)\B(0,1/2) and |Fϕ(ξ )| ≥ c if

3
5
≤ |ξ | ≤ 5

3
, (6)

where c > 0. We put ϕv := 2vnϕ(2v·),v ∈ N.

Definition 1 Let α : Rn → R, τ : Rn → R+ and p,q ∈P0. Let Φ and ϕ satisfy (5) and (6),
respectively. The Besov-type space B

α(·),τ(·)
p(·),q(·) is the collection of all f ∈S ′(Rn) such that

∥∥ f
∥∥
B

α(·),τ(·)
p(·),q(·)

:= sup
P∈Q

∥∥∥(2vα(·)ϕv ∗ f
|P|τ(·)

χP

)
v≥v+P

∥∥∥
`q(·)(Lp(·))

< ∞, (7)

where ϕ0 is replaced by Φ.

Using the system (ϕv)v∈N0 we can define the quasi-norm

∥∥ f
∥∥

Bα,τ
p,q

:= sup
P∈Q

1
|P|τ

( ∞

∑
v=v+P

2vαq∥∥(ϕv ∗ f )χP
∥∥q

p

) 1
q

for constants α and p,q ∈ (0,∞], with the usual modification if q = ∞. The Besov-type space
Bα,τ

p,q consist of all distributions f ∈S ′(Rn) for which
∥∥ f
∥∥

Bα,τ
p,q

< ∞.

3.1. Some properties of variable Besov-type spaces

In the following theorem we have the possibility to define these spaces by replacing v≥ v+P
by v ∈N0 in Definition 1, where the main arguments used in its proof rely on [9, Theorem 3.12],
so we omit the details and when τ := 0, was obtained by Sickel [18].

Theorem 4 Let α,τ ∈ Clog
loc , τ− ≥ 0 and p,q ∈P log

0 with p+,q+ < ∞. If (τ p− 1)+ < 0 or
(τ p−1)+ ≤ 0 and q := ∞, then

∥∥ f
∥∥N
B

α(·),τ(·)
p(·),q(·)

:= sup
P∈Q

∥∥∥(2α(·)ϕv ∗ f
|P|τ(·)

χP

)
v∈N0

∥∥∥
`q(·)(Lp(·))

,

is an equivalent quasi-norm in B
α(·),τ(·)
p(·),q(·) .
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For any γ ∈ Z, we put

∥∥ f
∥∥∗
B

α(·),τ(·)
p(·),q(·)

:= sup
P∈Q

∥∥∥(2vα(·)ϕv ∗ f
|P|τ(·)

χP

)
v≥v+P−γ

∥∥∥
`q(·)(Lp(·))

< ∞

where ϕ−γ is replaced by Φ−γ .

Lemma 5 Let α,τ ∈Clog
loc , τ− > 0, p,q ∈P log

0 and 0 < q+ < ∞. The quasi-norms
∥∥ f
∥∥∗
B

α(·),τ(·)
p(·),q(·)

and
∥∥ f
∥∥
B

α(·),τ(·)
p(·),q(·)

are equivalent with equivalent constants depending on γ .

Definition 2 Let p,q ∈P0, τ : Rn→ R+ and let α : Rn→ R. Then we define

b
α(·),τ(·)
p(·),q(·) :=

{
λ = {λv,m}v∈N0,m∈Zn ⊂ C :

∥∥λ
∥∥
b

α(·),τ(·)
p(·),q(·)

< ∞

}
,

where ∥∥λ
∥∥
b

α(·),τ(·)
p(·),q(·)

:= sup
P∈Q

∥∥∥( ∑
m∈Zn

2v(α(·)+ n
2 )λv,mχv,m

|P|τ(·)
χP

)
v≥v+P

∥∥∥
`q(·)(Lp(·))

.

If we replace dyadic cubes P by arbitrary balls BJ of Rn with J ∈Z, we then obtain equivalent
quasi-norms, where the supremum is taken over all J ∈ Z and all balls BJ of Rn.

Lemma 6 Let α,τ ∈ Clog
loc , τ− ≥ 0, p,q ∈P log

0 , 0 < q+ < ∞, v ∈ N0,m ∈ Zn, x ∈ Qv,m and

λ ∈ b
α(·),τ(·)
p(·),q(·) . Then there exists c > 0 independent of x,v and m such that

|λv,m| ≤ c 2−v(α(x)+ n
2 )|Qv,m|τ(x)

∥∥λ
∥∥
b

α(·),τ(·)
p(·),q(·)

∥∥χv,m
∥∥−1

p(·).

For a sequence λ = {λv,m}v∈N0,m∈Zn ⊂ C,0 < r ≤ ∞ and a fixed d > 0, set

λ
∗
v,m,r,d :=

(
∑

h∈Zn

|λv,h|r

(1+2v|2−vh−2−vm|)d

) 1
r

and λ ∗r,d := {λ ∗v,m,r,d}v∈N0,m∈Zn ⊂ C.

Lemma 7 Let α,τ ∈Clog
loc , τ− > 0, p,q∈P log

0 , 0 < q+ < ∞ and 0 < r < (τ p)−
τ+ . Then for d large

enough ∥∥λ
∗
r,d
∥∥
b

α(·),τ(·)
p(·),q(·)

≈
∥∥λ
∥∥
b

α(·),τ(·)
p(·),q(·)

.

3.2. Embeedings

For the spaces B
α(·),τ(·)
p(·),q(·) introduced above we want to show some embedding theorems.

We say a quasi-Banach space A1 is continuously embedded in another quasi-Banach space A2,
A1 ↪→ A2, if A1 ⊂ A2 and there is a c > 0 such that ‖ f‖A2

≤ c‖ f‖A1
for all f ∈ A1. We begin

with the following elementary embeddings.

Theorem 8 Let α,τ ∈Clog
loc , τ− > 0 and p,q,q0,q1 ∈P log

0 .
(i) If q0 ≤ q1, then

B
α(·),τ(·)
p(·),q0(·) ↪→B

α(·),τ(·)
p(·),q1(·).

(ii) If (α0−α1)
− > 0, then

B
α0(·),τ(·)
p(·),q0(·) ↪→B

α1(·),τ(·)
p(·),q1(·) .
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The proof can be obtained by using the same method as in [1, Theorem 6.1]. We next consider
embeddings of Sobolev-type. It is well-known that

Bα0,τ
p0,q ↪→ Bα1,τ

p1,q ,

if α0− n
p0

= α1− n
p1

, where 0 < p0 < p1 ≤∞,0≤ τ < ∞ and 0 < q≤∞ (see e.g. [25, Corollary
2.2]). In the following theorem we generalize these embeddings to variable exponent case.

Theorem 9 Let α0,α1,τ ∈Clog
loc , τ− > 0 and p0, p1,q∈P log

0 with q+ < ∞. If α0(·)> α1(·) and

α0(·)− n
p0(·) = α1(·)− n

p1(·) with
(

p0
p1

)+
< 1, then

B
α0(·),τ(·)
p0(·),q(·) ↪→B

α1(·),τ(·)
p1(·),q(·) .

Theorem 10 Let α,τ ∈Clog
loc ,τ

− > 0 and p,q ∈P log
0 with q+ < ∞. Then

S (Rn) ↪→B
α(·),τ(·)
p(·),q(·) ↪→S ′(Rn).

Now we establish some further embedding of the spaces Bα(·),τ(·)
p(·),q(·) .

Theorem 11 Let α,τ ∈Clog
loc ,τ

− > 0 and p,q ∈P log
0 with q+ < ∞. If (p2− p1)

+ ≤ 0, then

B
α(·)+nτ(·)+ n

p2(·)
− n

p1(·)
,0

p2(·),q(·) ↪→B
α(·),τ(·)
p1(·),q(·).

3.3. Atomic decomposition

The idea of atomic decompositions leads back to M. Frazier and B. Jawerth in their series
of papers [11], [12]. The main goal of this section is to prove an atomic decomposition result for
B

α(·),τ(·)
p(·),q(·) . We define for a > 0, α : Rn→ R and f ∈S ′(Rn), the Peetre maximal function

ϕ
∗,a
v 2vα(·) f (x) := sup

y∈Rn

2vα(y) |ϕv ∗ f (y)|
(1+2v |x− y|)a , v ∈ N0.

where ϕ0 is replaced by Φ. We now present a fundamental characterization of spaces under
consideration.

ϕ
∗,a
v 2vα(·) f (x) := sup

y∈Rn

2vα(y) |ϕv ∗ f (y)|
(1+2v |x− y|)a , v ∈ N0.

where ϕ0 is replaced by Φ. We now present a fundamental characterization of spaces under
consideration.

Theorem 12 Let τ,α ∈Clog
loc ,τ

− > 0 and p,q ∈P log
0 . Let m be as in Lemma 1, a > mτ+

(τ p)− and
Φ and ϕ satisfy (5) and (6), respectively. Then

∥∥ f
∥∥H
B

α(·),τ(·)
p(·),q(·)

:= sup
P∈Q

∥∥∥(ϕ
∗,a
v 2vα(·) f

|P|τ(·)
χP

)
v≥v+P

∥∥∥
`q(·)(Lp(·))

(8)

is an equivalent quasi-norm in B
α(·),τ(·)
p(·),q(·) .

Atoms are the building blocks for the atomic decomposition.
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Definition 3 Let K ∈N0,L+1 ∈N0 and let γ > 1. A K-times continuous differentiable function
a ∈CK(Rn) is called [K,L]-atom centered at Qv,m, v ∈ N0 and m ∈ Zn, if

supp a⊆ γQv,m (9)

|∂ β a(x)| ≤ 2v(|β |+ 1
2 ), for 0≤ |β | ≤ K,x ∈ Rn (10)

and if ∫
Rn

xβ a(x)dx = 0, for 0≤ |β | ≤ L and v≥ 1. (11)

If the atom a located at Qv,m, that means if it fulfills (9), then we will denote it by av,m. For
v = 0 or L =−1 there are no moment conditions (11) required.

Now we come to the atomic decomposition theorem.

Theorem 13 [26] Let α,τ ∈Clog
loc ,τ

− > 0 and p,q∈P log
0 with 0 < q− ≤ q+ < ∞. Let 0 < p− ≤

p+ < ∞ and let K,L+1 ∈ N0 such that

K ≥ ([α++nτ
+]+1)+, (12)

and
L≥max

(
−1, [n(

1

min(1, (τ p)−
τ+ )

−1)−α
−]
)
. (13)

Then f ∈S ′(Rn) belongs to B
α(·),τ(·)
p(·),q(·) , if and only if it can be represented as

f =
∞

∑
v=0

∑
m∈Zn

λv,mρv,m, converging in S ′(Rn), (14)

where ρv,m are [K,L]-atoms and λ = {λv,m}v∈N0,m∈Zn ∈ b
α(·),τ(·)
p(·),q(·) . Moreover, inf

∥∥λ
∥∥
b

α(·),τ(·)
p(·),q(·)

,

where the infimum is taken over admissible representations (14), is an equivalent quasi-norm
in B

α(·),τ(·)
p(·),q(·) .

If p, q, τ , and α are constants, then the restriction (12), and their counterparts, in the atomic
decomposition theorem are K ≥ ([α+nτ]+1)+ and L≥max

(
−1, [n( 1

min(1,p) −1)−α]
)
, which

are essentially the restrictions from the works of [8, Theorem 3.12].

4. CONCLUSIONS

In this work, we present some properties of variable Besov-type space. Moreover the Sobolev
embeddings for these function spaces are obtained. We also establish the atomic decomposition
of variable besov type space, and we obtain a convolution inequality for this space. The aim of
our results is to study the boundedness of many operators in harmonic analysis, for example the
pseudo-differential operator.
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