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ABSTRACT

An incidence of a graph G is a pair (v,e) where v is a vertex of G and e is an edge of G incident
with v. Two incidences (v,e) and (w, f ) of G are adjacent whenever (i) v = w, or (ii) e = f , or
(iii) vw = e or f . An incidence p-colouring of G is a mapping from the set of incidences of G
to the set of colours {1, . . . , p} such that every two adjacent incidences receive distinct colours.
Incidence colouring has been introduced by Brualdi and Quinn Massey in 1993 and, since then,
studied by several authors.

In this paper, we introduce and study the strong version of incidence colouring, where inci-
dences adjacent to a same incidence must also get distinct colours. We determine the exact value
of – or upper bounds on – the strong incidence chromatic number of several classes of graphs,
namely cycles, wheel graphs, trees, ladder graphs and subclasses of Halin graphs.

1. INTRODUCTION

All graphs considered in this paper are simple and loopless undirected graphs. We denote by
V (G) and E(G) the set of vertices and the set of edges of a graph G, respectively, by ∆(G) the
maximum degree of G, by N(v) the set of vertices adjacent to the vertex v and by distG(u,v) the
distance between vertices u and v in G.

An incidence of a graph G is a pair (v,e) where v is a vertex of G and e is an edge of G
incident with v. Two incidences (v,e) and (w, f ) of G are adjacent whenever (i) v = w, or (ii)
e = f , or (iii) vw = e or f .

An incidence p-colouring of G is a mapping from the set of incidences of G to the set of co-
lours {1, . . . , p} such that every two adjacent incidences receive distinct colours. The smallest p
for which G admits an incidence p-colouring is the incidence chromatic number of G, denoted by
χi(G). Incidence colourings were first introduced and studied by Brualdi and Quinn Massey [2].
Incidence colourings of various graph families have attracted much interest in recent years, see
for instance [3, 4, 5, 6, 7, 8, 9].

A strong edge p-colouring of G is a mapping from the set of edges of G to the set of colours
{1, . . . , p} such that any two edges meeting at a common vertex, or being adjacent to a same edge
of G, are assigned different colours. The smallest p for which G admits a strong edge p-colouring
is the strong chromatic index of G, denoted by χ

′
s(G).

The strong version of incidence colouring is defined in a similar way. A strong incidence
p-colouring of a graph G is a mapping from the set of incidences of G to a finite set of colours
{1, . . . , p} such that any two incidences that are adjacent or adjacent to the same incidence receive
distinct colours. The smallest p for which G admits a strong incidence p-colouring is the strong
incidence chromatic number, denoted by χs

i (G).
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2. PRELIMINARY RESULTS

We list in this section some basic results on the strong incidence chromatic number of various
graph classes. The following observation will be useful.

Observation 1 For every incidence (v,vu) in a graph G with maximum degree ∆, the set of
incidences that are strongly adjacent to (v,vu) is⋃

w∈N(v)\u
A+(w)∪

⋃
w∈N(v)

A−(w)∪
⋃

w∈N(u)\v
A−(w),

whose cardinality is at most 3∆2−2∆.

Proposition 2 For every graph G with maximum degree ∆, χs
i (G)≤ 3∆2−2∆+1.

For a given graph G with maximum degree ∆, we let

σ(G) = max
uv∈E(G)

{2degG(v)+degG(u)−1}.

In the following proposition we give an upper bound on the strong incidence chromatic
number of a graph G as a function of its strong chromatic index.

Proposition 3 For every graph G, χs
i (G)≤ 2χ

′
s(G).

3. SIMPLE GRAPH CLASSES

In this section, we determine the strong incidence chromatic number of stars, complete
graphs, cycles, trees and wheel graphs.

We denote by Sn, n≥ 1, the star of order n+1, by Kn, n≥ 1, the complete graph of order n
and by Km,n, m≥ n≥ 2, the complete bipartite graph with parts of size m and n. In [2], Brualdi
and Massey showed that χi(Sn) = n+ 1, χi(Kn) = n and χi(Km,n) = m+ 2, for all m ≥ n ≥ 2.
Since all incidences of any graph in these classes of graphs are pairwise strongly adjacent, we
have the following proposition.

Proposition 4

1. For every n≥ 1, χs
i (Sn) = 2n,

2. for every n≥ 2, χs
i (Kn) = 2|E(G)|,

3. for every m≥ n≥ 2, χs
i (Km,n) = 2nm.

Let Cn, n≥ 3, denote the cycle of order n.

Theorem 5 Let n be a positive integer such that n≥ 4 and 2n= 5q+r, with q> 0 and 0≤ r≤ 4.
Then χs

i (Cn) = 5+ dr/qe.

We now determine the value of χs
i (Wn), where Wn, n≥ 3, is the wheel graph of order n+1,

obtained from Cn by adding a universal vertex.

Theorem 6 Let n be a positive integer such that n≥ 3 and 2n= 5q+r, with q> 0 and 0≤ r≤ 4.
Then χs

i (Wn) = 5+2n+ dr/qe.

We finally determine the strong incidence chromatic number of trees.
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Theorem 7 If G is a tree then χs
i (G) = max

uv∈E(G)
{2degG(v)+degG(u)−1}= σ(G).

The ladder graph, denoted by Lh, is obtained from two paths of order h, h≥ 1, Ph = v1 . . .vh and
P′h = v′1 . . .v

′
h by adding the edges viv′i, 1≤ i≤ h. In the following theorem, we give the value of

χs
i (Lh).

Theorem 8 For every integer h≥ 3, χs
i (Lh) = 10.

Recall first that a Halin graph H is a planar graph obtained from a tree of order at least 4 with
no vertex of degree 2, by adding a cycle connecting all its leaves [?]. We call this cycle the outer
cycle of H. The subgraph T obtained by deleting all the edges of the outer cycle of H is thus a
tree, called the internal tree of H.

4. SUBCLASSES OF HALIN GRAPHS

In this section, we determine the exact value of – or upper bounds on – the strong incidence
chromatic number of every Halin graph whose internal tree is either a comb or a double star.

4.1. Halin graphs whose internal tree is a comb

A tree is called a (3,1)-tree if the degree of each non-leaf vertex is 3. A caterpillar is a tree T
such that, after deleting all its leaves, the remaining graph is a simple path called the spine of T .
A comb is a caterpillar which is also a (3,1)-tree. It is easy to see that every Halin graph whose
internal tree is a comb is a cubic Halin graph. In particular, if the spine has one vertex then this
is the complete graph K4.

For every integer h ≥ 1, we construct a Halin graph Hh of order 2h+ 2 whose internal tree
Th is a comb, using the construction given in [?]. Let Ph = v1v2 . . .vh be the spine of Hh. We
denote by `1 and `′1 (resp. `h and `′h) the two leaves of v1 (resp. vh), by `i the unique leaf of vi,
2≤ i≤ h−1, and by Ch the outer cycle of Hh.

Let H c
h be the set of all Halin graphs whose internal tree is a comb of order 2h+2. A Halin

graph Hh such that Ch = `′1`1`2 . . . `h`
′
h`
′
1 is called a necklace. We denote by Nh the (unique)

necklace of order 2h+2. Observe that H c
h = {Nh} for every h, 1≤ h≤ 3. We prove that if H is

not a necklace then this bound can be decreased to 14.

Theorem 9 If H ∈H c
h \{Nh}, h≥ 4, then 11≤ χs

i (H)≤ 14.

We now determine the value of the strong incidence chromatic number of necklaces.

Theorem 10 For every necklaces Nh, h≥ 1, we have

χ
s
i (Nh) =

{
12 if h = 1,2,3,5,
11 otherwise.

4.2. Halin graphs whose internal tree is a double star

The double star, denoted by Sm,n, m ≥ n ≥ 2, is the graph obtained from the stars Sm and
Sn by adding an edge joining the central vertex v of Sm to the central vertex u of Sn. The Halin
graph HDm,n is the Halin graph whose internal tree is the double star Sm,n and whose outer cycle
is u1 . . .unvm . . .v1u1. We denote by P the path v1 . . .vm and by P′ the path u1 . . .un. It is easy to
see that for every graph HDm,n, m≥ n≥ 2, the incidences of the set

A−(v)∪A+(v)∪A−(u)∪{(v1,v1u1)},

of cardinality 2deg(v)+deg(u) = σ(HDm,n)+1, are pairwise strongly adjacent. Therefore, we
have the following inequality.
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Proposition 11 For every two integers m and n, m≥ n≥ 2, χs
i (HDm,n)≥ 2m+n+3=σ(HDm,n)+

1.

By the following theorem, we determine the value of the strong incidence chromatic number
of χs

i (HDm,n).

Theorem 12 For every two integers m and n, m≥ n≥ 3,

χ
s
i (HDm,n) =



σ(HDm,n)+4 if n = 2 and m = 2,
σ(HDm,n)+3 if n = 2 and m 6= 2,

or (n,m) ∈ {(3, 3), (3, 4)},
σ(HDm,n)+2 if n = 3 and m 6∈ {3, 4},

or n = 4 and m 6≡ 3 (mod 5),
σ(HDm,n)+1 otherwise.

5. CONCLUSIONS

In this paper, we have introduced and studied the strong version of incidence colouring.
We have determined the exact value of – or upper bounds on – the strong incidence chromatic
number of several classes of graphs, namely cycles, wheel graphs, trees, ladder graphs and some
subclasses of Halin graphs. We leave as open problems the following questions.

1. What is the best possible upper bound on the strong incidence chromatic number of graphs
with bounded maximum degree ? In particular, what about graphs with maximum de-
gree 3 ?

2. What is the best possible upper bound on the strong incidence chromatic number of Halin
graphs ?

3. What is the best possible upper bound on the strong incidence chromatic number of d-
degenerated graphs ?

6. REFERENCES

[1] B. Benmedjdoub, I. Bouchemakh and É. Sopena. Incidence Choosability of Graphs. Dis-
crete Appl. Math. 265 :40–55, 2019.

[2] R.A. Brualdi and J.J. Quinn Massey. Incidence and strong edge colorings of graphs. Dis-
crete Math. 122 :51–58, 1993.

[3] P. Gregor, B. Lužar, R. Soták. Note on incidence chromatic number of subquartic graphs.
J. Comb. Optim. 34 :174-181, 2017.

[4] P. Gregor, B. Lužar, R. Soták. On incidence coloring conjecture in Cartesian products of
graphs. Discrete Appl. Math. 213 :93–100, 2016.

[5] M. Hosseini Dolama, É. Sopena and X. Zhu. Incidence coloring of k-denegerated graphs.
Discrete Math. 283 :121–128, 2004.

[6] M. Maydanskyi. The incidence coloring conjecture for graphs of maximum degree 3. Dis-
crete Math. 292 :131–141, 2005.

[7] É. Sopena and J. Wu. The incidence chromatic number of toroidal grids. Discuss. Math.
Graph Theory 33 :315–327, 2013.

[8] S.-D. Wang, D.-L. Chen and S.-C. Pang. The incidence coloring number of Halin graphs
and outerplanar graphs. Discrete Math. 256(1-2) :397–405, 2002.

[9] J. Wu. Some results on the incidence coloring number of graphs. Discrete Math. 309 :3866–
3870, 2009.

ICMA2021-4


	1  Introduction
	2  Preliminary results
	3  Simple graph classes
	4  Subclasses of Halin graphs
	4.1  Halin graphs whose internal tree is a comb
	4.2  Halin graphs whose internal tree is a double star

	5  conclusions
	6  References

