COMMON FIXED POINT FOR MULTIVALUED (ψ, θ, G) -CONTRACTION TYPE MAPS IN METRIC SPACES WITH A GRAPH STRUCTURE

Saadia Benchabane and Smaïl Djebali

S. Benchabane Laboratoire "Théorie du Point Fixe et Applications" ENS, BP 92 Kouba. Algiers, 16006. Algeria. S. Djebali Department of Mathematics & Statistics

College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU) PB 90950. Riyadh 11623, Saudi Arabia.

ABSTRACT

In this work, we introduce the notion of a common (ψ, θ, G) -contraction multi-valued mapping in order to establish some new common fixed point theorems for these classes of mappings in complete metric spaces endowed with a graph. An example of application illustrates the main existence result. Our results generalize some recent known results.

1. INTRODUCTION

Since the proof of Banach's fixed contraction principle [2], many research works have considered different kinds of generalizations. Among them, the classical multi-valued version was established by Covitz and Nadler [11] in 1969 using the Hausdorff-Pompeiu metric in a complete metric space.

In 2008, Jachymski [7] introduced a new approach in metric fixed point theory by replacing the order structure with a graph structure on a metric space. They introduced the concept of *G*-contraction, that is a single-valued contraction mapping in a metric space with a graph. Afterwards, many authors extended the Banach *G*-contraction in different ways (we refer to [1], [3], [12], [14], [15] and references therein).

Recently, Jleli and samet [9] introduced the θ -contraction and proved a fixed point result as a generalization of the Banach contraction principle. In turn, their result has also been extended by many authors (see, e.g., [5], [6], [8], [10], [16]).

Consistent with [9], we denote by Θ the set of all functions $\theta : (0, \infty) \to (1, \infty)$ satisfying the following conditions :

 $(\Theta_1) \theta$ is non-decreasing,

 (Θ_2) for each sequence $(t_n)_n \subset (0,\infty)$, $\lim_{n\to\infty} \theta(t_n) = 1$ if and only if $\lim_{n\to\infty} t_n = 0^+$,

 (Θ_3) there exist $r \in (0,1)$ and $l \in (0,\infty]$ such that $\lim_{t \to 0^+} \frac{\theta(t)-1}{t'} = l$.

The aim of this paper is to prove some common fixed point results for (ψ, θ, G) -contractions multi-valued mappings in a metric space endowed with a graph *G*.

First of all, we collect some basic notions and primary results we need to develop our results.

Let (X,d) be a metric space. We shall denote by CB(X) the family of nonempty closed bounded subsets of X and by C(X) the family of nonempty closed subsets of X. For $A, B \in C(X)$,

ICMA2021-1

$$H(A,B) = \max\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\},\$$

where $d(x,B) = \inf\{d(x,y) : y \in B\}$. *H* is called the Hausdorff-Pompeiu distance on C(X). This is a metric on CB(X).

A graph *G* is an ordered pair (V, E), where *V* is a set and $E \subset V \times V$ is a binary relation on *V*. Elements of *E* are called edges and are denoted by E(G) while elements of *V*, denoted V(G), are called vertices. If the direction is imposed in *E*, that is the edges are directed, then we get a digraph (directed graph). Hereafter, we assume that *G* has no parallel edges, i.e. two vertices cannot be connected by more than one edge. Thus, *G* can be identified with the pair (V(G), E(G)). If *x* and *y* are vertices of *G*, then a path in *G* from *x* to *y* of length $k \in \mathbb{N}$ is a finite sequence $(x_n)_n$, $n \in \{0, 1, 2, ..., k\}$ of vertices such that $x = x_0, ..., x_k = y$ and $(x_{n-1}, x_n) \in E(G)$ for $n \in \{1, 2, ..., k\}$. A graph *G* is connected if there is a path between any two vertices and it is weakly connected if \tilde{G} is connected, where \tilde{G} denotes the undirected graph obtained from *G* by ignoring the direction of edges. Let G^{-1} be the graph obtained from *G* by reversing the direction of edges (the conversion of the graph *G*). We have

$$E(G^{-1}) = \{(x, y) \in X \times X : (y, x) \in E(G)\}.$$

It is more convenient to treat \widetilde{G} as a directed graph for which the set of edges is symmetric. Then

$$E(\widetilde{G}) = E(G) \cup E(G^{-1}).$$

Let G_x be the component of *G* consisting of all the edges and vertices which are contained in some path in *G* beginning at *x*. If *G* is such that E(G) is symmetric, then for $x \in V(G)$, we may define the equivalence class $[x]_G$ on V(G) by the relation xRy if there is a path in *G* from *x* to *y*. Then $V(G_x) = [x]_G$.

Throughout this paper, (X, d) denotes a metric space, G = (V(G), E(G)) is a directed graph without parallel edges with V(G) = X and $(x, x) \notin E(G)$ (the graph does not contain loops). The following condition first appeared in [7]:

Property (A) : for any sequence $(x_n)_n$ in X, if $x_n \to x$ and $(x_n, x_{n+1}) \in E(G)$, for all $n \in \mathbb{N}$, then $(x_n, x) \in E(G)$ for $n \in \mathbb{N}$.

With this condition, Jachymski showed that in a complete metric space, a *G*-contraction has a fixed if and only if $X_f \neq \emptyset$, where

$$X_f = \{ x \in X : (x, f(x)) \in E(G) \}.$$
 (1)

2. MAIN RESULT

Consider the following classes of functions :

Definition 1 We denote by Ψ the set of functions $\psi : (1, \infty) \to (1, \infty)$ satisfying the following conditions :

(i) ψ is non-decreasing;

(ii) for each sequence $(t_n)_n \subset (1,\infty)$, $\lim_{n\to\infty} \psi(t_n) = 1$ if and only if $\lim_{n\to\infty} t_n = 1$.

Now we give the following definition

Definition 2 Let (X,d) be a metric space endowed with a graph G. Two mappings $T_1, T_2 : X \to C(X)$ are said to be a common (Ψ, θ, G) -contraction if for all $x, y \in X$ such that $(x, y) \in E(G)$ and $a \in T_i(x)$, there exists $b \in T_j(y)$ for $i, j \in \{1, 2\}$ with $i \neq j$ such that $(a, b) \in E(G)$ and

$$\psi(\theta(d^p(a,b))) \le \psi([\theta((M_p(T_ix,T_jy))]^{k(d(x,y))}) + LN_p(T_ix,T_jy),$$

ICMA2021-2

where

$$\begin{split} N_p(T_ix,T_jy) &= \min\{d^p(x,T_i(x)), d^p(y,T_j(y)), d^p(y,T_i(x)), d^p(x,T_j(y))\},\\ M_p(T_ix,T_jy) &= \max\left\{d^p(x,y), d^p(x,T_i(x)), d^p(y,T_j(y)), \\ \frac{d^p(y,T_i(x)) + d^p(x,T_j(y))}{2^p(y,T_j(y))}, \frac{d^p(y,T_i(x)) d^p(x,T_j(y))}{1 + d^p(x,y)}\right\}, \end{split}$$

 $k: (0, +\infty) \to [0, 1)$ satisfies $\limsup_{s \to t^+} k(s) < 1$, for all $t \in [0, +\infty)$, $L \ge 0$, $\theta \in \Theta$, $\psi \in \Psi$, $\psi \circ \theta$ is lower semi continuity, and $1 \le p < \frac{1}{r}$.

Our existence results for common fixed points are collected in the following :

Theorem 1 Let (X,d) be a complete metric space endowed with a directed graph G and suppose that the triple (X,d,G) has the property (A). Let $T_1, T_2 : X \to C(X)$ be a common (ψ, θ, G) -contraction. Then the following statements hold :

(1) For every $x \in X_{T_i}$, i = 1 or i = 2, the mappings T_1 , $T_2 \mid_{[x]_{\widetilde{G}}}$ have a common fixed point, where X_{T_i} is as defined in (1).

(2) If $X_{T_i} \neq \emptyset$, i = 1 or i = 2, and G is weakly connected, then T_1 and T_2 have a common fixed point in X.

(3) If $X' = \bigcup \{ [x]_{\widetilde{G}} : x \in X_{T_i} \}$, i = 1 or i = 2, then $T_1, T_2 \mid_{X'}$ have a common fixed point.

(4) If $Graph(T_i) \subseteq E(G)$, i = 1 or i = 2, then T_1 and T_2 have a common fixed point.

3. REFERENCES

- M.R. Alfuraidan, M. Bachar, and M.A. Khamsi, A graphical version of Reich's fixed point theorem, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3931-3938.
- [2] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math. 3, 133-181 (1922).
- [3] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal. 75, 3895-3901 (2012).
- [4] G. Durmaz Some theorems for a new type of multivalued contractive maps on metric space, Turkish J. Math. 41 (2017), no. 4, 1092–1100.
- [5] H.A. Hançer, G. Minak, and I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory. 18 (2017), 229-236.
- [6] N. Hussain, V. Parvaneh, B. Samet, and C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2015, 2015 :185, 17 pp
- [7] J. Jachymski, *The contraction principle for mappings on a metric with a graph*, Proc. Am. Math. Soc. 136 (2008), no. 4, 1359-1373.
- [8] M. Jleli, E. Karapinar, and B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl. 2014, 2014 :439, 9 pp.
- [9] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014, 2014 :38, 8 pp.
- G. Minak, I. Altun, Overall approach to Mizoguchi-Takahashi type fixed point results, Turk. J. Math., 40 (2016), 895-904.
- [11] S.B. Nadler, Multi-valued contration mappings, Pacific J. Math., 30, 1969, no. 2, 475-488.

ICMA2021-3

- [12] A. Nicolae, D. O'Regan, and A. Petrusel, Fixed point theorems for single-valued and multivalued generalized contractions in metric spaces endowed with a graph, Georgian Math. J. 18, 307-327 (2011).
- [13] B.D. Rouhani, S. Moradi, Common fixed point of multivalued generalized φ-weak contractive mappings, Fixed Point Theory Appl. (2010), 13 p. doi :10.1155/2010/708984.
- [14] M. Samreen, T. Kamran, Fixed point theorems for integral G-contractions, Fixed Point Theory Appl. 2013, 149 (2013). doi :10.1186/1687-1812-2013-149.
- [15] J. Tiammee, S. Suantai, Coincidence point theorems for graph-preserving multi-valued mappings, Fixed Point Theory Appl. 2014, 70 (2014). doi:10.1186/1687-1812-2014-70.
- [16] D.W. Zheng, Z.Y. Cai, and P. Wang, New fixed point theorems for θ-φ contraction in complete metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 2662–2670.