# COMMON FIXED POINT FOR MULTIVALUED $(\psi, \theta, G)$-CONTRACTION TYPE MAPS IN METRIC SPACES WITH A GRAPH STRUCTURE 

Saadia Benchabane and Smaïl Djebali<br>S. Benchabane<br>Laboratoire "Théorie du Point Fixe et Applications"<br>ENS, BP 92 Kouba. Algiers, 16006. Algeria.<br>S. Djebali<br>Department of Mathematics \& Statistics<br>College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU) PB 90950. Riyadh 11623, Saudi Arabia.


#### Abstract

In this work, we introduce the notion of a common $(\psi, \theta, G)$-contraction multi-valued mapping in order to establish some new common fixed point theorems for these classes of mappings in complete metric spaces endowed with a graph. An example of application illustrates the main existence result. Our results generalize some recent known results.


## 1. INTRODUCTION

Since the proof of Banach's fixed contraction principle [2], many research works have considered different kinds of generalizations. Among them, the classical multi-valued version was established by Covitz and Nadler [11] in 1969 using the Hausdorff-Pompeiu metric in a complete metric space.

In 2008, Jachymski [7] introduced a new approach in metric fixed point theory by replacing the order structure with a graph structure on a metric space. They introduced the concept of $G$-contraction, that is a single-valued contraction mapping in a metric space with a graph. Afterwards, many authors extended the Banach $G$-contraction in different ways (we refer to [1], [3], [12], [14], [15] and references therein).

Recently, Jleli and samet [9] introduced the $\theta$-contraction and proved a fixed point result as a generalization of the Banach contraction principle. In turn, their result has also been extended by many authors (see, e.g., [5], [6], [8], [10], [16]).

Consistent with [9], we denote by $\Theta$ the set of all functions $\theta:(0, \infty) \rightarrow(1, \infty)$ satisfying the following conditions :
$\left(\Theta_{1}\right) \theta$ is non-decreasing,
$\left(\Theta_{2}\right)$ for each sequence $\left(t_{n}\right)_{n} \subset(0, \infty), \lim _{n \rightarrow \infty} \theta\left(t_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} t_{n}=0^{+}$,
$\left(\Theta_{3}\right)$ there exist $r \in(0,1)$ and $l \in(0, \infty]$ such that $\lim _{t \rightarrow 0^{+}} \frac{\theta(t)-1}{t^{r}}=l$.
The aim of this paper is to prove some common fixed point results for $(\psi, \theta, G)$-contractions multi-valued mappings in a metric space endowed with a graph $G$.

First of all, we collect some basic notions and primary results we need to develop our results.
Let $(X, d)$ be a metric space. We shall denote by $C B(X)$ the family of nonempty closed bounded subsets of $X$ and by $C(X)$ the family of nonempty closed subsets of $X$. For $A, B \in C(X)$,
let

$$
H(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}
$$

where $d(x, B)=\inf \{d(x, y): y \in B\} . H$ is called the Hausdorff-Pompeiu distance on $C(X)$. This is a metric on $C B(X)$.

A graph $G$ is an ordered pair $(V, E)$, where $V$ is a set and $E \subset V \times V$ is a binary relation on $V$. Elements of $E$ are called edges and are denoted by $E(G)$ while elements of $V$, denoted $V(G)$, are called vertices. If the direction is imposed in $E$, that is the edges are directed, then we get a digraph (directed graph). Hereafter, we assume that $G$ has no parallel edges, i.e. two vertices cannot be connected by more than one edge. Thus, $G$ can be identified with the pair $(V(G), E(G))$. If $x$ and $y$ are vertices of $G$, then a path in $G$ from $x$ to $y$ of length $k \in \mathbb{N}$ is a finite sequence $\left(x_{n}\right)_{n}, n \in\{0,1,2, \ldots k\}$ of vertices such that $x=x_{0}, \ldots, x_{k}=y$ and $\left(x_{n-1}, x_{n}\right) \in E(G)$ for $n \in\{1,2, \ldots, k\}$. A graph $G$ is connected if there is a path between any two vertices and it is weakly connected if $\widetilde{G}$ is connected, where $\widetilde{G}$ denotes the undirected graph obtained from $G$ by ignoring the direction of edges. Let $G^{-1}$ be the graph obtained from $G$ by reversing the direction of edges (the conversion of the graph $G$ ). We have

$$
E\left(G^{-1}\right)=\{(x, y) \in X \times X:(y, x) \in E(G)\} .
$$

It is more convenient to treat $\widetilde{G}$ as a directed graph for which the set of edges is symmetric. Then

$$
E(\widetilde{G})=E(G) \cup E\left(G^{-1}\right)
$$

Let $G_{x}$ be the component of $G$ consisting of all the edges and vertices which are contained in some path in $G$ beginning at $x$. If $G$ is such that $E(G)$ is symmetric, then for $x \in V(G)$, we may define the equivalence class $[x]_{G}$ on $V(G)$ by the relation $x R y$ if there is a path in $G$ from $x$ to $y$. Then $V\left(G_{x}\right)=[x]_{G}$.

Throughout this paper, $(X, d)$ denotes a metric space, $G=(V(G), E(G))$ is a directed graph without parallel edges with $V(G)=X$ and $(x, x) \notin E(G)$ (the graph does not contain loops). The following condition first appeared in [7] :

Property (A) : for any sequence $\left(x_{n}\right)_{n}$ in $X$, if $x_{n} \rightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$, for all $n \in \mathbb{N}$, then $\left(x_{n}, x\right) \in E(G)$ for $n \in \mathbb{N}$.

With this condition, Jachymski showed that in a complete metric space, a $G$-contraction has a fixed if and only if $X_{f} \neq \emptyset$, where

$$
\begin{equation*}
X_{f}=\{x \in X:(x, f(x)) \in E(G)\} . \tag{1}
\end{equation*}
$$

## 2. MAIN RESULT

Consider the following classes of functions :
Definition 1 We denote by $\Psi$ the set of functions $\psi:(1, \infty) \rightarrow(1, \infty)$ satisfying the following conditions :
(i) $\psi$ is non-decreasing;
(ii) for each sequence $\left(t_{n}\right)_{n} \subset(1, \infty), \lim _{n \rightarrow \infty} \psi\left(t_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} t_{n}=1$.

Now we give the following definition
Definition 2 Let $(X, d)$ be a metric space endowed with a graph $G$. Two mappings $T_{1}, T_{2}: X \rightarrow$ $C(X)$ are said to be a common $(\psi, \theta, G)$-contraction if for all $x, y \in X$ such that $(x, y) \in E(G)$ and $a \in T_{i}(x)$, there exists $b \in T_{j}(y)$ for $i, j \in\{1,2\}$ with $i \neq j$ such that $(a, b) \in E(G)$ and

$$
\psi\left(\theta\left(d^{p}(a, b)\right)\right) \leq \psi\left(\left[\theta\left(\left(M_{p}\left(T_{i} x, T_{j} y\right)\right)\right]^{k(d(x, y))}\right)+L N_{p}\left(T_{i} x, T_{j} y\right),\right.
$$

Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida
where

$$
\begin{aligned}
N_{p}\left(T_{i} x, T_{j} y\right)= & \min \left\{d^{p}\left(x, T_{i}(x)\right), d^{p}\left(y, T_{j}(y)\right), d^{p}\left(y, T_{i}(x)\right), d^{p}\left(x, T_{j}(y)\right)\right\}, \\
M_{p}\left(T_{i} x, T_{j} y\right)= & \max \left\{d^{p}(x, y), d^{p}\left(x, T_{i}(x)\right), d^{p}\left(y, T_{j}(y)\right),\right. \\
& \frac{d^{p}\left(y, T_{i}(x)\right)+d^{p}\left(x, T_{j}(y)\right)}{2^{p}}, \\
& \left.\frac{d^{p}\left(x, T_{i}(x) d^{p}\left(y, T_{j}(y)\right)\right.}{1+d^{p}(x, y)}, \frac{d^{p}\left(y, T_{i}(x)\right) d^{p}\left(x, T_{j}(y)\right)}{1+d^{p}(x, y)}\right\},
\end{aligned}
$$

$k:(0,+\infty) \rightarrow[0,1)$ satisfies $\lim \sup k(s)<1$, for all $t \in[0,+\infty), L \geq 0, \theta \in \Theta, \psi \in \Psi, \psi \circ \theta$ is lower semi continuity, and $1 \leq p<\frac{s \rightarrow t^{+}}{r}$.

Our existence results for common fixed points are collected in the following :
Theorem 1 Let $(X, d)$ be a complete metric space endowed with a directed graph $G$ and suppose that the triple $(X, d, G)$ has the property $(A)$. Let $T_{1}, T_{2}: X \rightarrow C(X)$ be a common $(\psi, \theta, G)$ contraction. Then the following statements hold:
(1) For every $x \in X_{T_{i}}, i=1$ or $i=2$, the mappings $T_{1},\left.T_{2}\right|_{[x]_{G}}$ have a common fixed point, where $X_{T_{i}}$ is as defined in (7).
(2) If $X_{T_{i}} \neq \emptyset, i=1$ or $i=2$, and $G$ is weakly connected, then $T_{1}$ and $T_{2}$ have a common fixed point in $X$.
(3) If $X^{\prime}=\cup\left\{[x]_{\tilde{G}}: x \in X_{T_{i}}\right\}, i=1$ or $i=2$, then $T_{1},\left.T_{2}\right|_{X^{\prime}}$ have a common fixed point.
(4) If $\operatorname{Graph}\left(T_{i}\right) \subseteq E(G), i=1$ or $i=2$, then $T_{1}$ and $T_{2}$ have a common fixed point.

## 3. REFERENCES

[1] M.R. Alfuraidan, M. Bachar, and M.A. Khamsi, A graphical version of Reich's fixed point theorem, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3931-3938.
[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math. 3, 133-181 (1922).
[3] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal. 75, 3895-3901 (2012).
[4] G. Durmaz Some theorems for a new type of multivalued contractive maps on metric space, Turkish J. Math. 41 (2017), no. 4, 1092-1100.
[5] H.A. Hançer, G. Minak, and I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory. 18 (2017), 229-236.
[6] N. Hussain, V. Parvaneh, B. Samet, and C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2015, 2015 :185, 17 pp
[7] J. Jachymski, The contraction principle for mappings on a metric with a graph, Proc. Am. Math. Soc. 136 (2008), no. 4, 1359-1373.
[8] M. Jleli, E. Karapinar, and B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl. 2014, 2014 :439, 9 pp.
[9] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014, 2014 :38, 8 pp.
[10] G. Minak, I. Altun, Overall approach to Mizoguchi-Takahashi type fixed point results, Turk. J. Math., 40 (2016), 895-904.
[11] S.B. Nadler, Multi-valued contration mappings, Pacific J. Math., 30, 1969, no. 2, 475-488.

Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida
[12] A. Nicolae, D. O'Regan, and A. Petrusel, Fixed point theorems for single-valued and multivalued generalized contractions in metric spaces endowed with a graph, Georgian Math. J. 18, 307-327 (2011).
[13] B.D. Rouhani, S. Moradi, Common fixed point of multivalued generalized $\varphi$-weak contractive mappings, Fixed Point Theory Appl. (2010), 13 p. doi :10.1155/2010/708984.
[14] M. Samreen, T. Kamran, Fixed point theorems for integral G-contractions, Fixed Point Theory Appl. 2013, 149 (2013). doi :10.1186/1687-1812-2013-149.
[15] J. Tiammee, S. Suantai, Coincidence point theorems for graph-preserving multi-valued mappings, Fixed Point Theory Appl. 2014, 70 (2014). doi :10.1186/1687-1812-2014-70.
[16] D.W. Zheng, Z.Y. Cai, and P. Wang, New fixed point theorems for $\theta-\phi$ contraction in complete metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 2662-2670.

