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ABSTRACT

In this paper, we present some hybrid methods for solving unconstrained optimization problems.
These methods are defined using proper combinations of the search directions and included para-
meters in conjugate gradient and quasi-Newton method of Broyden–Fletcher–Goldfarb–Shanno
(CG-BFGS). Their global convergence under the Wolfe line search is analyzed for general objec-
tive functions. Numerical experiments show the superiority of the modified hybrid (CG-BFGS)
method with respect to some existing methods.

Keywords : Unconstrained optimization, Global convergence, Conjugate gradient methods,
Quasi-Newton methods, Wolfe line search.

1. INTRODUCTION

Conjugate gradient methods are very important ones for solving unconstrained optimization
problems, especially for large scale problems. It is well known that Fletcher-Reeves (FR) [5],
Conjugate Descent (CD) [4] and Dai-Yuan (DY) [3] conjugate gradient methods have strong
convergence properties, but they may not perform well in practice. On the other hand, Hestnes-
Stiefel (HS) [6], Polak-Ribiere-Polyak (PRP) [8, 9] and Liu-Storey (LS) [7] conjugate gradient
methods may not converge in general, but they often perform better than FR, CD and DY. To
combine the best numerical performances of the LS method and the global convergence pro-
perties of the CD method, Yang et al. [11] proposed a hybrid LS-CD method. Dai and Liao [2]
proposed an efficient conjugate gradient method (Dai-Liao type method). Later, some more effi-
cient Dai-Liao type conjugate gradient method, known as DHSDL and DLSDL were proposed
in [12] .

The rest of this paper is organized as follows. In Section 2, we give various possibilities
to determine the step size and the search direction. A hybridization of the conjugate gradient
method (CG) and the BFGS method will also be presented. In Section 3, we consider the mo-
dification of LSCD method, termed as MLSCD and the modification of (DHSDL and DLSDL)
termed as MMDL [10] and we prove the global convergence using the Wolfe line search instead
of backtracking line search used by the authors in [10]. In Section 4, we consider the hybrid
method BFGS-CG termed as H-BFGS-CG1 in [10] and we prove the global convergence with
the Wolfe line search termed WH-BFGS-CG. In section 5, we report some numerical results and
compare the performance of the different considered methods. Finally, we give some conclusions
to end this paper.
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2. PRELIMINARIES

Consider the following unconstrained optimization problem

min f (x), x ∈ Rn, (1)

where f : Rn −→ R is a continuously differentiable function. Let gk be the gradient of f (x)
at the current iterative point xk, then the classical conjugate gradient method for (1) is given by

xk+1 = xk +αkdk , (2)

in which αk > 0 is the step size found by one of the line search methods, and dk is the search
direction defined by

dk =

{
−g0, k = 0,
−gk +βkdk−1, k ≥ 1, (3)

where βk is an appropriately defined real scalar, known as the conjugate gradient parameter.
Since Fletcher and Reeves introduced the nonlinear conjugate gradient method in 1964,

many formulae have been proposed using various modifications of the conjugate gradient di-
rection dk and the parameter βk. The most popular parameters βk are :

β
FR
k =

‖ gk ‖2

‖ gk−1 ‖2 , β
CD
k =− ‖ gk ‖2

gT
k−1dk−1

, β
DY
k =

‖ gk ‖2

yT
k−1dk−1

,

β
HS
k =

gT
k yk−1

yT
k−1dk−1

, β
PRP
k =

gT
k yk−1

‖ gk−1 ‖2 , β
LS
k =−

gT
k yk−1

gT
k−1dk−1

,

β
DHSDL
k =

‖ gk ‖2 − ‖gk‖
‖gk−1‖ | g

T
k gk−1 |

µ | gT
k dk−1 |+dT

k−1yk−1
− t

gT
k sk−1

dT
k−1yk−1

, µ > 1, t > 0,

β
DLSDL
k =

‖ gk ‖2 − ‖gk‖
‖gk−1‖ | g

T
k gk−1 |

µ | gT
k dk−1 | −dT

k−1gk−1
− t

gT
k sk−1

dT
k−1yk−1

, µ > 1, t > 0,

where yk−1 = gk−gk−1, sk−1 = xk− xk−1 and ‖ . ‖ denotes the Euclidean vector norm.
In this paper, the step size αk is determined using the following Wolfe line search conditions

f (xk +αkdk)≤ f (xk)+ραkgT
k dk, (4)

gT
k+1dk ≥ σgT

k dk, 0 < ρ < σ < 1.

We consider hybrid CG methods where the search direction dk, k ≥ 1, from (3) is modified
using one of the following tow rules [10]

dk = D(βk,gk,dk−1) =−

(
1+βk

gT
k dk−1

‖gk‖2

)
gk +βkdk−1 (5)

dk = D1(βk,gk,dk−1) =−Bkgk +D(βk,gk,dk−1) (6)

and the conjugate gradient parameter βk is defined using some proper combinations of the
parameters βk given above and already defined hybridizations of these parameters.

On the other hand, the search direction dk in quasi-Newton methods is obtained as a solution
of the linear algebraic system

Bkdk =−gk.

Where Bk is an approximation of the Hessian. The initial approximation is the identity matrix
(B0 = I) and the subsequent updates Bk are defined by an appropriate formula.
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Here, we are interested in the BFGS update formula, defined by

Bk+1 = Bk +
ykyT

k
sT

k yk
−

BksksT
k Bk

sT
k Bksk

, (7)

where sk = xk+1− xk, yk = gk+1−gk. The next secant equation must hold

Bk+1sk = yk, (8)

which is possible only if the curvature condition

yT
k sk > 0 (9)

is satisfied.

3. MODIFICATION OF LSCD, DHSDL AND DLSDL METHODS

3.1. A modified LSCD conjugate gradient method

We consider the modification of LSCD method, defined in [11] by

β
LSCD
k = max

{
0,min

{
β

LS
k ,βCD

k

}}
,

dk =

{
−g0 k = 0
dk =−gk +β LSCD

k dk−1 k ≥ 1,

and define the MLSCD method [10] with the search direction

dk = D(β LSCD
k ,gk,dk−1).

Now, we give the algorithm of this method using the Wolfe line search.

3.1.1. Algorithm WMLSCD

— Step0 : Given a starting point x0 and a parameter 0 < ε < 1.
— Step1 : Set k = 0 and compute d0 =−g0.
— Step2 : If ‖gk‖ ≤ ε, STOP; else go to Step3.
— Step3 : Find the step size αk ∈]0,1] using the Wolfe line search.
— Step4 : Compute xk+1 = xk +αkdk.
— Step5 : Compute yk = gk+1−gk and go to Step6.
— Step6 : Compute

β
LS
k+1 = −

yT
k gk+1

gT
k dk

, β
CD
k+1 =−

‖gk+1‖2

gT
k dk

,

β
LSCD
k+1 = max

{
0,min

{
β

LS
k+1,β

CD
k+1

}}
.

— Step7 : Compute the search direction dk+1 = D(β LSCD
k+1 ,gk+1,dk).

— Step8 : Let k := k+1 and go to Step2.
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3.1.2. Convergence of the WMLSCD conjugate gradient method

It is easy to prove the next theorem.

Theorem 1 Let βk be any CG parameter. Then, the search direction dk = D(βk,gk,dk−1) satis-
fies

gT
k dk =−‖gk‖2 .

To prove the global convergence of the WMLSCD method, we need the following assump-
tions.

Assumption 3.1 The level set L = {x ∈ Rn/ f (x)≤ f (x0)} is bounded.
Assumption 3.2 The function f is continuously differentiable in some neighbourhood N

of L and its gradient is Lipschitz continuous. Namely, there exists a constant L > 0 such that

‖g(x)−g(y)‖ ≤ L‖x− y‖ , for all x,y ∈N . (10)

It is well known that if Assumption 3.2 holds, then there exists a positive constant γ , such
that

‖gk‖ ≤ γ,∀k (11)

The next lemma, often called the Zoutendijk condition [13], is used to prove the global
convergence of nonlinear CG method.

Lemma 2 [10] Let the Assumption 3.1 and Assumption 3.2 be satisfied. Let the sequence {xk}
be generated by the MLSCD method with the Wolfe line search. Then it holds that

∞

∑
k=1

‖gk‖4

‖dk‖2 <+∞ (12)

Theorem 3 Let the Assumption 3.1 and Assumption 3.2 hold. Then, the sequence {xk} generated
by the WMLSCD method with the Wolfe line search satisfies

liminf
k→∞

‖gk‖= 0 (13)

3.2. A modified DHSDL and DLSDL conjugate gradient method

In this part, we have the hybrid MMDL method, proposed in [10], which is defined by the
search direction dk as follows

β
MMDL
k = max

{
0,min

{
β

DHSDL
k ,β DLSDL

k

}}
dk = D(β MMDL

k ,gk,dk−1).

We give the algorithm of this method where we have changed the backtracking line search
by the Wolfe line search.

3.2.1. Algorithm WMMDL

— Step0 : Given a starting point x0, a parameter 0 < ε < 1 and µ > 1.
— Step1 : Set k = 0 and compute d0 =−g0.
— Step2 : If ‖gk‖ ≤ ε, STOP; else go to Step3.
— Step3 : Find the step size αk ∈]0,1] using the Wolfe line search.
— Step4 : Compute xk+1 = xk +αkdk.
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— Step5 : Compute yk = gk+1−gk, sk = xk+1− xk and go to Step6.
— Step6 : Compute

β
DHSDL
k+1 =

‖ gk+1 ‖2 − ‖gk+1‖
‖gk‖ | g

T
k+1gk |

µ | gT
k+1dk |+dT

k yk
−αk

gT
k+1sk

dT
k yk

β
DLSDL
k+1 =

‖ gk+1 ‖2 − ‖gk+1‖
‖gk‖ | g

T
k+1gk |

µ | gT
k+1dk | −dT

k gk
−αk

gT
k+1sk

dT
k yk

β
MMDL
k+1 = max

{
0,min

{
β

DHSDL
k+1 ,β DLSDL

k+1

}}
.

— Step7 : Compute the search direction dk+1 = D(β MMDL
k+1 ,gk+1,dk).

— Step8 : Let k := k+1 and go to Step2.

3.2.2. Convergence of the WMMDL conjugate gradient method

The following theorem prove the global convergence of the WMMDL method.

Theorem 4 Let the Assumption 3.1 and Assumption 3.2 be satisfied. Then the sequence {xk}
generated by the WMMDL method with the Wolfe line search satisfies

liminf
k→∞

‖gk‖= 0

4. HYBRID BFGS-CG METHODS

It is known that conjugate gradient method are better compared to the quasi-Newton method
in terms of the CPU time. In addition, BFGS is more costly in terms of the memory storage requi-
rements than CG. On the other hand, the quasi-Newton methods are better in terms of the number
of iterations and the number of function evaluations. For this purpose, various hybridizations of
quasi-Newton methods and CG methods have been proposed by various researchers.

4.1. WH-BFGS-CG method

P. S. Stanimirovic et al. proposed in [10] a three-term hybrid BFGS-CG method, called H-
BFGS-CG, defined by the search direction

dk =

{
−Bkgk , k = 0
D1(β

LSCD
k+1 ,gk,dk−1), k ≥ 1

The following algorithm correspond to this method, where we have changed the backtra-
cking line search by the Wolfe line search.

4.1.1. Algorithm WH-BFGS-CG

— Step0 : Given a starting point x0 and a parameter 0 < ε < 1.
— Step1 : Set k = 0 and compute g0, B0 = I, d0 =−B0g0.
— Step2 : If ‖gk‖ ≤ ε, STOP; else go to Step3.
— Step3 : Find the step size αk ∈]0,1] using the Wolfe line search.
— Step4 : Compute xk+1 = xk +αkdk.
— Step5 : Compute yk = gk+1−gk, sk = xk+1− xk and go to Step6.
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— Step6 : Compute

β
LS
k+1 =−

yT
k gk+1

gT
k dk

, β
CD
k+1 =−

‖gk+1‖2

gT
k dk

,

β
LSCD
k+1 = max

{
0,min

{
β

LS
k+1,β

CD
k+1

}}
.

— Step7 : Compute Bk+1 using (7).
— Step8 : Compute the search direction dk+1 = D1(β

LSCD
k+1 ,gk+1,dk).

— Step9 : Let k := k+1 and go to Step2.

4.2. Convergence analysis of WH-BFGS-CG method

Assumption 4.1 :
H1 : The objective function f is twice continuously differentiable.
H2 : The level set L is convex. Moreover, there exist positive constants c1 and c2 such that

c1 ‖z‖2 ≤ zT H(x)z≤ c2 ‖z‖2 , for all z ∈ Rn and x ∈L ,

where H(x) is the Hessian of f .
H3 : The gradient g is Lipschitz continuous at the point x∗, that is, there exists a positive

constant c3 satisfying
‖g(x)−g(x∗)‖ ≤ c3 ‖x− x∗‖ ,

for all x in a neighbourhood of x∗.

Theorem 5 [1] Let {Bk} be generated by the BFGS update formula (7), where sk = xk+1− xk,
yk = gk+1−gk. Assume that the matrix Bk is symmetric positive definite and satisfies (8) and (9)
for all k. Furthermore, assume that {sk} and {yk} satisfy the inequality

‖yk−G∗sk‖
‖sk‖

≤ εk,

for some symmetric positive definite matrix G∗ and for some sequence {εk} possessing the
property

∞

∑
k=1

εk < ∞,

then

lim
k−→∞

‖(Bk−G∗)sk‖
‖sk‖

= 0,

and the sequences {‖Bk‖} ,
{∥∥∥B−1

k

∥∥∥} are bounded.

Theorem 6 (Sufficient descent and global convergence) Consider Algorithm WH-BFGS-CG.
Assume that the conditions H1, H2 and H3 in Assumption 4.1 are satisfied as well as conditions
of Theorem5.1. Then

lim
k→∞
‖gk‖2 = 0.

5. NUMERICAL RESULTS

In this section, some numerical results are reported to illustrate the behaviours of WMLSCD,
WMMDL and WH-BFGS-CG methods. The step size αk is determined using the Wolfe line
search.

We use the Matlab Langage with a precision ε = 10−6.
We designate by :
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— k : The number of iterations required to obtain the solution.
— Time : The execution time in second.

Example 1 We take the function

f (x) =
n

∑
i=1

(exp(xi)− xi).

We take as starting point x0 = (1,1, . . . ,1)T .
The minimum of this function is reached at the point x∗ = (0,0, . . . ,0)T and f (x∗) = n.
The results obtained are summarised in the following tables :
For n = 100, we have

Methods k Time ‖ gk ‖
WMLSCD 22 3.883876 5.8263e−07
WMMDL 22 3.803220 5.8263e−07
WH-BFGS-GC 5 1.622640 8.2976e−08

For n = 500, we have

Methods k Time ‖ gk ‖
WMLSCD 24 74.325460 6.4631e−07
WMMDL 24 70.101070 6.4631e−07
WH-BFGS-GC 5 21.087659 1.8554e−07

Example 2 We take the function

f (x) =
n

∑
i=1

ln(exp(xi)+ exp(−xi)).

We take as starting point x0 = (1.1,1.1, . . . ,1.1)T

The minimum of this function is reached at the point x∗ = (0,0, . . . ,0)T and f (x∗) = n ln(2).
The results obtained are summarised in the following tables :
For n = 100, we have

Methods k Time ‖ gk ‖
WMLSCD 104 40.083872 9.9132e−07
WMMDL 104 83.918822 9.9369e−07
WH-BFGS-GC 66 20.465962 8.4827e−07

For n = 200, we have

Methods k Time ‖ gk ‖
WMLSCD 107 83.209667 9.1391e−07
WMMDL 108 80.273199 9.2334e−07
WH-BFGS-GC 69 52.410529 8.2027e−07

For n = 300, we have

Methods k Time ‖ gk ‖
WMLSCD 109 171.535865 9.8675e−07
WMMDL 111 205.430203 9.5399e−07
WH-BFGS-GC 70 110.807414 7.9846e−07

Commentaries : The numerical tests show clearly that the proposed hybrid algorithm WH-
BFGS-GC Wolfe based on line search is more efficient in terms of number of iterations and
computation time than WMLSCD and WMMDL methods.
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6. CONCLUSION

We have considered the hybrid conjugate gradient methods, MLSCD, MMDL and H-BFGS-
CG, for solving unconstrained optimization problems where we have changed the backtracking
line search given in [10] by the Wolfe line search. Firstly, we have shown that the obtained
WMLSCD, WMMDL and WH-BFGS-CG algorithms are globally convergent for general func-
tions.

Secondly, the numerical simulations confirm the effectiveness of the approach WH-BFGS-
CG. In fact, the WH-BFGS-CG method is the most efficient in terms of number of iterations and
computation time compared to WMLSCD and WMMDL methods which was not the case with
backtracking line search, where the computation time of H-BFGS-GC was greater than MLSCD
and MMDL [10].
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