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Abstract

We consider optimal control of a new type of non-local stochastic partial differential
equations (SPDEs). The SPDEs have space interactions, in the sense that the dynamics
of the system at time t and position in space x also depend on the space-mean of values
at neighbouring points. This is a model with many applications, e.g. to population
growth studies and epidemiology. We prove the existence and uniqueness of solutions of
a class of SPDEs with space interactions, and we show that, under some conditions, the
solutions are positive for all times if the initial values are. Sufficient and necessary max-
imum principles for the optimal control of such systems are derived. Finally, we apply
the results to study an optimal vaccine strategy problem for an epidemic by modelling
the population density as a space-mean stochastic reaction-diffusion equation.
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Keywords: Stochastic partial differential equations (SPDEs); space interactions, space-
mean dependence; population modelling; maximum principle; backward stochastic partial
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1 Introduction

The purpose of this paper is to introduce a new type generalised stochastic heat equation
with space interactions as a model for population growth. By space interactions we mean
that the dynamics of the population density Y (t, x) at a time t and a point x depends not
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only on its value and derivatives at x, but also on its values in a neighbourhood of x. For
example, define G to be a space-averaging operator of the form

G(x, φ) =
1

V (Kr)

∫
Kr

φ(x+ y)dy; φ ∈ L2(Rn), (1.1)

where V (·) denotes Lebesgue volume and

Kr = {y ∈ Rn; |y| < r}

is the ball of radius r > 0 in Rn centred at 0. Then

Y G(t, x) := G(x, Y (t, ·))

is the average value of Y (t, x+ ·) in the ball Kr.
More generally, if we are given a nonnegative measure (weight) ρ(dy) of total mass 1, then
the ρ-weighted average of Y at x is defined by

Y ρ(t, x) :=

∫
D

Y (t, x+ y)ρ(dy).

We believe that by allowing interactions between populations at different locations, we get
a better model for population growth, including the modelling of epidemics. For example,
we know that COVID-19 is spreading by close contact in space.

We illustrate the above by the following population growth model:

Example 1.1 With G as in (1.1), suppose the density Y (t, x) of a population at the time
t and the point x satisfies the following space-interaction version of a reaction-diffusion
equation:

dY (t, x) =
(

1
2
∆Y (t, x) + αY (t, x)− u(t, x)Y (t, x)

)
dt+ βY (t, x)dB(t),

Y (0, x) = ξ(x); x ∈ D,

Y (t, x) = η(t, x); (t, x) ∈ (0, T )× ∂D,

(1.2)

where α is a constant, ξ, η are given bounded functions and Y (t, x) = G(x, Y (t, ·)).
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Here u(t, x) is our control process, e.g. representing our harvesting or vaccine effort.

x

Y (t, x)

D

Then (1.2) is a natural model for population growth in an environment with space inter-
actions.

If u(t, x) represents a vaccination effort rate at (t, x), we define the total expected utility
J0(u) of the harvesting by an expression of the form

J0(u) = E
[ ∫

D

∫ T

0

U1(u(t, x))dtdx+

∫
D

U2(Y (T, x))dx
]
,

where U1 and U2 are given cost functions. The problem to find the optimal vaccination rate
u∗ is the following:

Problem 1.1 Find u∗ ∈ U such that

J0(u
∗) = inf

u∈U
J0(u),

where U is a given family of admissible controls.

We will return to the example above after first discussing more general stochastic optimal
control models with a system whose state Y (t, x) at time t and at the point x satisfies an
SPDE with a non-local space-interaction dynamics of the following type:

dY (t, x) = AxY (t, x)dt+ b(t, x, Y (t, x), Y (t, ·), u(t, x))dt
+σ(t, x, Y (t, x), Y (t, ·), u(t, x))dB(t),

Y (0, x) = ξ(x); x ∈ D,
Y (t, x) = η(t, x); (t, x) ∈ (0, T )× ∂D.

(1.3)
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Here dY (t, x) denotes the differential with respect to t while Ax is the second order partial
differential operator acting on x of the form

Axϕ(x) =
n∑

i,j=1

αij(x)
∂2ϕ

∂xi∂xj

+
n∑

i=1

βi(x)
∂ϕ

∂xi

; ϕ ∈ C2
0(Rn). (1.4)

Precise conditions on the coefficients will be given in the beginning of Section 4.2.
The domain D is an open set in Rn with a Lipschitz boundary ∂D and closure D. We

extend Y (t, x) to be a function on all of [0, T ]× Rn by setting

Y (t, x) = 0 for x ∈ Rn \D.

0 T
t

Y (0, x) = ξ(x)

︸
︷︷

︸
D

Y (t, x) = η(t, x)

[0, T ]× D̄

Y (t, x) = η(t, x)

There are two well-known approaches to solve stochastic control problems: The Bellman
dynamic programming method and the Pontryagin maximum principle. Because of the
space-mean dependence in our model, the system is not Markovian, and it is not clear how
to apply a dynamic programming approach. In stead we will use a stochastic version of
the Pontryagin maximum principle, which involves a coupled system of a forward/backward
SPDEs,

In the classical case when there is no interaction from neighbouring places, stochastic
control of SPDEs has been studied widely in the literature, for example, we refer to Ben-
soussan [3], [4], [5], [6], Hu & Peng [18], Zhou [33], Øksendal [22], Fuhrman et a [12] and
Øksendal et al [23], [24], [25] and the references therein.
In the case of a control problem for an SPDE with space-interaction dynamics we derive an
adjoint process, which is a backward SPDE with space-interaction dependence. For related
singular stochastic control with space-interaction, we refer to Agram et al [1].
More details about the theory of SPDE, we refer for example to Gawarecki & Mandrekar
[14], Da Prato & Zabczyk [28], Pardoux [26], [27], Hairer [19], Prévôt & Roeckner [29] and
to Roeckner & Zhang [30].
Here is a summary of the content of this paper:

• In Section 2 we prove the existence and uniqueness of the solution of a class of space-
interaction SPDEs, including the application studied in Section 5, and we give an
iterative procedure for finding the solution (Theorem 2.1). This result is new.
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• In Section 3 we use white noise theory to prove a useful positivity theorem for a
class of SPDEs with space interactions (Theorem 3.1), and we prove that the solution
is positive if the initial values are (Theorem 3.2).These results are also new and of
independent interest.

• Finally, as an illustration of our results, in Section 5 we study an example about optimal
vaccination strategy for an epidemics modelled as an SPDE with space-interactions.

2 Solutions of SPDEs with space interactions,

and positivity

In this section we prove an existence and uniqueness result for solutions of SPDEs with
space interactions. We are not aiming at proving this for the most general SPDE of this
type, but we settle for a class of SPDEs which includes the application in Section 5. Thus,
for simplicity we consider only the case when Ax = L given by

L =
1

2
∆ :=

1

2

k=n∑
k=1

∂2

∂x2
k

, and D = Rn,

but it is clear that our method can also be applied to more general situations.
Fix t > 0, and let k ∈ N0 = {0, 1, 2, . . . , . . .} , α = (α1, α2, . . . , αm) ∈ Nm

0 ;m = 1, 2, ....
For functions f ∈ C∞

0 (Rn) (the family of functions in C(Rn) with compact support), we
define the Sobolev norm

|f |k =
∑
|α|≤k

( ∫
Rn

|∂αf(x)|2dx
) 1

2 ;α = (α1, α2, . . . , αn) ∈ Nn
0 ,

and we define the Sobolev space Hk to be the closure of C∞
0 (Rn) in this norm.

Note that Hk is a Hilbert space for all k.

Also, note that if f ∈ Hk+2 then Lf ∈ Hk, because

|Lf |k =
∑
|α|≤k

( ∫
Rn

|∂αLf(x)|2dx
) 1

2 ≤ 1

2

∑
|α|≤k+2

( ∫
Rn

|∂αf(x)|2dx
) 1

2 =
1

2
|f |k+2. (2.1)

Let Y(t)
k denote the family of adapted random fields Y (s, x) = Y (s, x, ω) , such that

||Y ||(t)k < ∞ where

||Y ||t,k = E
[
sup
s≤t

{
|Y (s, .)|2k

}] 1
2

, (2.2)

and let Y(t) be the intersection of all the spaces Y(t)
k ; k ∈ N0, with the norm

||Y ||2t :=
∞∑
k=1

2−k||Y ||2t,k. (2.3)
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In the following we let
φ 7→ φ(x)

be any averaging operator such that there exists a constant C1 such that

|φ|k ≤ C1|φ|k for all φ, k. (2.4)

This holds, for example, if φ(x) =
∫
φ(x+ y)ρ(dy) for some measure ρ of total mass 1.

We can now prove the following:

Theorem 2.1 Let ξ ∈ Y(T ) be deterministic and let h : [0, T ] 7→ R be bounded and deter-
ministic.

(i) Then there exists a unique solution Y (t, x) ∈ Y(T ) of the following SPDE with space
interactions:

Y (t, x) = ξ(x) +

∫ t

0

LY (s, x)ds

+

∫ t

0

Y (s, x)ds+

∫ t

0

h(s)Y (s, x)dB(s); t ∈ [0, T ].

(ii) Moreover, the solution Y (t, x) can be found by iteration, as follows:
Choose Y0 ∈ Y (T ) arbitrary deterministic and define inductively Ym to be the solution
of

Ym(t, x) = ξ(x) +

∫ t

0

LYm(s, x)ds+

∫ t

0

Y m−1(s, x)ds

+

∫ t

0

h(s)Ym(s, x)dB(s); t ∈ [0, T ];m = 1, 2, .... (2.5)

Then
Ym → Y in Y(T ) when m → ∞.

3 The non-homogeneous stochastic heat equation and

positivity

In this section we will prove positivity of the solutions Y (t, x) of SPDEs of the form{
dY (t, x) = LY dt+K (t, x) dt+ h (t)Y (t) dB (t) ,
Y (0, x) = ξ(x); x ∈ Rn,

where the function ξ ∈ Y(T ) is deterministic and positive, h : [0, T ] 7→ R is bounded and
deterministic and K(t, x) = K(t, x, ω) : [0, T ]×Rn×Ω 7→ R is a given positive random field.
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To motivate our method, we first recall the following basic results about the classical heat
equation:
Let L = 1

2
△ and consider the equation{

dY (t, x) = LY dt+K (t, x) dt,
Y (0, x) = ξ(x); x ∈ Rn,

(3.1)

where ξ ∈ Y(T ) and K ∈ L2([0, T ] × Rn) are given deterministic functions. Define the
operator Pt : L

2 (Rn) → L2 (Rn) by

Ptf (x) =

∫
Rn

(2πt)−
n
2 f (y) exp

(
−|x− y|2

2t

)
dy, (3.2)

then
d

dt
Ptf = L (Ptf) ,

and if we define

Y (t, x) = Ptξ (x) +

∫ t

0

Pt−s (K (s, .)) (x) ds,

we get

d

dt
Y (t, x) = L (Ptξ) (x) + P0 (K (t, .)) (x) +

∫ t

0

L (Pt−s (K (s, .))) (x) ds

= LY (t, x) +K (t, x) .

Hence
Y (t, x) solves the heat equation (3.1).

Next, consider the case

dY (t, x) = LY dt+K (t, x) dt+ θ (t)Y (t, x) dt.

Multiply the equation by

Z (t) = exp

(
−
∫ t

0

θ (s) ds

)
.

Then the equation becomes

d (Z (t)Y (t, x)) = L (Z (t)Y (t, x)) dt+ Z (t)K (t, x) dt.

Hence, if we put
Ŷ = Z (t)Y (t, x) ,

then Ŷ solves the equation{
dŶ (t, x) = LŶ dt+ Z (t)K (t, x) dt,

Ŷ (0, x) = ξ(x),
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and we are back to the previous case.
Finally, consider the SPDE

dY (t, x) = LY dt+K (t, x) dt+ h (t)Y (t) dB (t) , (3.3)

where h is a given bounded deterministic function and K(t, x) is stochastic and adapted,

and E[
∫ T

0

∫
Rn K

2(t, x)dtdx] < ∞. We handle this case by using white noise calculus on the
Hida space (S)∗ of stochastic distributions: We introduce white noise Wt ∈ (S)∗ defined by

Wt =
d

dt
B(t),

and then we see that equation (3.3) can be written

d

dt
Y (t, x) = LY +K (t, x) + Y (t)h (t) ⋄Wt,

where ⋄ denotes Wick multiplication. We refer to e.g. [10] for more information about white
noise calculus. If we Wick-multiply this equation by

Zt := exp⋄
(
−
∫ t

0

h (s) dB (s)

)
,

where in general exp⋄(ϕ) =
∑∞

n=0
1
n!
ϕ⋄n;ϕ ∈ (S)∗ is the Wick exponential, we get

Zt ⋄
d

dt
Y (t, x) = L (Y ⋄ Zt) +K ⋄ Zt + Y (t)h (t) ⋄Wt ⋄ Zt. (3.4)

Now
d

dt
(Zt ⋄ Y ) = Zt ⋄

d

dt
Y (t)− Y (t) ⋄ Zt ⋄ h (t)Wt, (3.5)

and hence (3.4) can be written as

d

dt
(Zt ⋄ Yt)︸ ︷︷ ︸

Ŷt

= L (Zt ⋄ Yt)︸ ︷︷ ︸
Ŷt

+K (t, x) ⋄ Zt.

This has the same form as (3.1). Hence the solution Ŷ is

Ŷ (t, x) = Ptξ (x) +

∫ t

0

Pt−s (K (s, .)) (x) ⋄ Zsds.

Now we go back from Ŷ to Y and get the solution

Y (t, x) = Ŷ (t, x) ⋄ exp⋄
(∫ t

0

h (s) dB (s)

)
= Ptξ (x) ⋄ exp⋄

(∫ t

0

h (s) dB (s)

)
+

∫ t

0

Pt−s (K (s, .)) (x) ⋄ exp⋄
(∫ t

s

h (r) dB (r)

)
ds. (3.6)
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Note that

exp⋄
(∫ t

0

h (s) dB (s)

)
= exp

(∫ t

0

h (s) dB (s)− 1

2

∫ t

0

h2 (s) ds

)
> 0.

Recall the Gjessing-Benth lemma (see [15], [8] or Theorem 2.10.6 in [16] or Proposition 13
in [7]), which states that

ϕ ⋄ exp⋄
(∫ t

0

h (s) dB (s)

)
= (τ−hϕ) exp

⋄
(∫ t

0

h (s) dB (s)

)
,

where, for ϕ : Ω 7→ R, we define τ−hϕ(ω) = ϕ(ω − h);ω ∈ Ω to be the shift operator on Ω.
Using this in (3.6) we conclude that if

ξ ≥ 0 and K ≥ 0 then Y ≥ 0.

We summarize what we have proved as follows:

Theorem 3.1 Assume that ξ ∈ Y(T ) is deterministic, E[
∫ T

0

∫
Rn K

2(t, x)dtdx] < ∞ and let
h : [0, T ] 7→ [0, T ] be bounded deterministic.

1. Then the unique solution Y (t, x) ∈ Y(T ) of the non-homogeneous SPDE

dY (t, x) = LY dt+K (t, x) dt+ h (t)Y (t) dB (t) ,

Y (0, x) = ξ(x); x ∈ Rn

is given by

Y (t, x) = (τ−hPtξ)(x) exp
⋄
(∫ t

0

h (s) dB (s)

)
+

∫ t

0

(τ−hPt−s(K(s, .))(x) exp⋄(

∫ t

s

h(r)dB(r))ds,

where exp⋄(
∫ t

s
h(r)dB(r)) = exp(

∫ t

s
h(r)dB(r)− 1

2

∫ t

s
h2(r)dr); 0 ≤ s ≤ t ≤ T.

2. In particular, if ξ(x) ≥ 0 and K(t, x) ≥ 0 for all (t, x) ∈ [0, T ]× Rn, then Y (t, x) ≥ 0
for all (t, x) ∈ [0, T ]× Rn.

Combining this with Theorem 2.1 we get

Theorem 3.2 (Positivity) Assume that ξ ∈ Y (T ) is deterministic and let h : [0, T ] 7→ R be
bounded and deterministic. Let Y (t, x) ∈ Y(T ) be the unique solution of the following SPDE
with space interactions:

Y (t, x) = ξ(x) +

∫ t

0

LY (s, x)ds+

∫ t

0

Y (s, x)ds+

∫ t

0

h(s)Y (s, x)dB(s); t ∈ [0, T ], (3.7)

given by Theorem 3.1.
Then if ξ(x) ≥ 0 for all x ∈ Rn, we have Y (t, x) ≥ 0 for all (t, x) ∈ [0, T ]× Rn.

9



4 Application to vaccine optimisation

Assume that the density Y (t, x) of infected individuals in a population in a random/noisy en-
vironment changes over time t and space point x according to the following space-interaction
reaction-diffusion equation

dY (t, x) =
1

2
∆Y (t, x)dt+

(
b0Y (t, x)− u(t, x)Y (t, x)

)
dt+ σ0Y (t, x)dB(t),

Y (0, x) = ξ(x) ≥ 0; x ∈ D,

Y (t, x) = η(t, x) ≥ 0; (t, x) ∈ (0, T )× ∂D,

where b0, σ0 are given constants modelling the effect on the growth dY (t, x) of the term Y and of
the noise, respectively, and Y (t, x) = G(x, Y (t, ·)), where, as before, G is a space-averaging operator
of the form

G(x, φ) =
1

V (Kθ)

∫
Kθ

φ(x+ y)dy; φ ∈ L2(D),

with V (·) denoting Lebesgue volume and

Kθ = {y ∈ Rn; |y| < θ}

is the ball of radius θ > 0 in Rn centered at 0.
By a slight extension of Theorem 3.2 (see Remark ??), we know that Y (t, x) ≥ 0 for all t, x.
If u(t, x) represents our vaccine effort rate at (t, x), we define the total expected cost J(u) of the
effort by

J(u) = E
[ρ
2

∫
D

∫ T

0
u(t, x)2Y (t, x)dtdx+

∫
D
h0(x)Y (T, x)dx

]
,

where ρ > 0 is a constant, and h0(x) > 0 is a bounded function. Here we may regard the first
quadratic term as the cost of the vaccination effort, with unit price ρ, and the second term as the
cost of having remaining infection at time T . In this case the Hamiltonian is

H(t, x, y, y, p, q) = (αy − uy)p+ βyq +
ρ

2
u2y,

and the adjoint equation satisfies
dp(t, x) = −

[
1
2∆p(t, x)− u(t, x)p(t, x) +∇yH(t, x) + βq(t, x) + ρ

2u
2(t, x)

]
dt+ q(t, x)dB(t),

p(T, x) = h0(x); x ∈ D

p(t, x) = 0; (t, x) ∈ (0, T )× ∂D,

(4.1)

where, by Example ??, ∇yH(t, x) = vD(x)αp(t, x), with vD(x) :=
V ((x+Kr)∩D)

V (Kr)
.

The first order condition for an optimal u = û for H together with the requirement that Y (t, x) > 0.
lead to

û(t, x) =
p(t, x)

ρ
.
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Hence the pair of random fields (p̂, q̂) becomes
dp̂(t, x) = −

[
1
2∆p̂(t, x) + 1

2ρ p̂
2(t, x) + vD(x)αp̂(t, x) + βq̂(t, x)

]
dt+ q̂(t, x)dB(t),

p̂(T, x) = h0(x); x ∈ D,

p̂(t, x) = 0; (t, x) ∈ (0, T )× ∂D.

(4.2)

Since h0 and all the coefficients of this equation are deterministic, we can conclude that q̂ = 0 and
(4.2) reduces to the deterministic partial differential equation

∂
∂t p̂(t, x) = −

[
1
2∆p̂(t, x) + 1

2ρ p̂
2(t, x) + vD(x)αp̂(t, x)

]
,

p̂(T, x) = h0(x); x ∈ D,

p̂(t, x) = 0; (t, x) ∈ (0, T )× ∂D.

This is a (deterministic) Fujita type backward quadratic reaction diffusion equation. We could
also from the beginning have allowed h0(x) to be random and satisfy E

[∫
D h20(x)dx

]
< ∞. Then

the equation (4.2) would have become a nonlinear backward stochastic reaction-diffusion equation.
We will not discuss this further here, but refer to Bandle, & Levine [2], Dalang et al [9] and Fujita
[13] and the references therein for more information.
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