RESULTS IN SEMI-*E*-CONVEX FUNCTIONS

Ayache Benhadid

Abbes Laghrour University, Faculty of Science and Technology Departement of Mathematics and Informatics, Khenchela, Algeria. e-mail: benhadidayache@yahoo.fr

ABSTRACT

The concept of convexity and its various generalizations is important for quantitative and qualitative studies in operations research or applied mathematics. Recently, E-convex sets and E-convex functions were introduced by Youness [\[2\]](#page-3-0), and they have some important applications in various branches of mathematical sciences. Youness in [\[2\]](#page-3-0) introduced a class of sets and functions which is called *E*-convex sets and *E*-convex functions by relaxing the definition of convex sets and convex functions. Xiusu Chen [\[1\]](#page-3-1) introduced a new concept of semi *E*-convex functions and dis-cussed its properties. According to Xiusu Chen [\[1\]](#page-3-1), if a function $f : M \to \mathbb{R}$ is semi-*E*-convex on an *E*-convex set $M \subset \mathbb{R}^n$ then, $f(E(x)) \le f(x)$ for each $x \in M$. In this article we have discussed the inverse of this proposition and present some results for convex functions.

1. INTRODUCTION

Youness in [\[2\]](#page-3-0) introduced a class of sets and functions which is called *E*-convex sets and *E*convex functions by relaxing the definition of convex sets and convex functions. Following this Xiusu Chen [\[1\]](#page-3-1) introduced a new class of semi-*E*-convex functions and applied these functions to non linear programming problems see for instance [\[4,](#page-3-2) [5\]](#page-3-3) . In this paper, we give weak condition for a lower semi-continuous function on \mathbb{R}^n to be a semi-*E*-convex function, we also present some results for convex functions.

2. PRELIMINARIES

Let *M* be a nonempty subset of \mathbb{R}^n and let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a map. We recall :

Definition 1 [\[2\]](#page-3-0) A set $M \subseteq \mathbb{R}^n$ is said to be E-convex in \mathbb{R}^n if

$$
tE(x) + (1 - t)E(y) \in M,
$$

for each $x, y \in M$ *and all* $t \in [0, 1]$ *.*

Definition 2 [\[2\]](#page-3-0) A function $f : M \to \mathbb{R}$ is said to be E-convex on M if M is E-convex and

$$
f(tE(x) + (1-t)E(y)) \le tf(E(x)) + (1-t)f(E(y)),
$$

for each $x, y \in M$ *and all* $t \in [0, 1]$ *.*

Definition 3 [\[1\]](#page-3-1) A function $f : M \to \mathbb{R}$ is said to be semi-E-convex on M if M is E-convex and

$$
f(tE(x) + (1-t)E(y)) \le tf(x) + (1-t)f(y),
$$

for each $x, y \in M$ *and all* $t \in [0, 1]$ *.*

ICMA2021-1

Definition 4 *[\[1\]](#page-3-1)* We define a map $E \times I$ as follows :

$$
E \times I : \mathbb{R}^n \times \mathbb{R} \longrightarrow \mathbb{R}^n \times \mathbb{R}
$$

$$
(x,t) \rightarrow (E \times I)(x,t) = (E(x),t).
$$

This Proposition gives a characterization of a semi-*E*-convex function in term of its *epi*(*f*).

Proposition 1 [\[1\]](#page-3-1) The function $f : \mathbb{R}^n \to \mathbb{R}$ is semi-E-convex on \mathbb{R}^n if and only if its epigraph $epi(f) = \{(x, \alpha) \in \mathbb{R}^n \times \mathbb{R} : f(x) \leq \alpha\}$ *is E* × *I-convex on* $\mathbb{R}^n \times \mathbb{R}$ *.*

Definition 5 [\[3\]](#page-3-4) A function $f : \mathbb{R}^n \to \mathbb{R}$ is lower semi-continuous if and only if, for every real *number* α *, the set* $\{x \in \mathbb{R}^n : f(x) \leq \alpha\}$ *is closed.*

In the following we introduce a Proposition about lower semi-continuous functions which shall be used in the sequal. For details and for the missing proofs we refer G. Dal Maso [\[3\]](#page-3-4).

Proposition 2 [\[3\]](#page-3-4) A function $f : \mathbb{R}^n \to \mathbb{R}$ is lower semi-continuous if and only if its epigraph is *closed.*

Definition 6 Let $(x, s), (y, t) \in \mathbb{R}^{n+1}$, with $x, y \in \mathbb{R}^n$ and $s, t \in \mathbb{R}$. The line segment $[(x, s), (y, t)]$ *(with endpoints* (*x*,*s*) *and* (*y*,*t*)) *is the segment*

$$
\{\alpha(x,s)+(1-\alpha)(y,t):0\leq\alpha\leq 1\}.
$$

 $If (x, s) \neq (y, t)$ *, the interior* $](x, s)$ *,* (y, t) $[$ *of* $[(x, s)$ *,* (y, t) $]$ *is the segment*

 $\{\alpha(x, s) + (1 - \alpha)(y, t) : 0 < \alpha < 1\}.$

In a similar way, we can define $[(x, s), (y, t))$ *and* $((x, s), (y, t)]$ *.*

3. MAIN RESULTS FOR SEMI-*E*-CONVEX FUNCTIONS

Lemma 3 Let $E: \mathbb{R}^n \to \mathbb{R}^n$ be a linear and idempotent map. Consider $(\bar{x}, u) \in [(E(x), s), (E(y), t)].$ *Then*

 $E(\overline{x}) = \overline{x}$.

Proof. Let $(\bar{x}, u) \in [(E(x), s), (E(y), t)]$, then there exist $\alpha \in [0, 1]$, such that $(\bar{x}, u) = \alpha(E(x), s) + (1 - \alpha)(E(y), t)$. Using the fact that *E* is linear and idempotent map, we have

$$
(E \times I)(\overline{x}, u) = (E(\alpha E(x) + (1 - \alpha)E(y)), \alpha s + (1 - \alpha)t)
$$

= (\alpha E(x) + (1 - \alpha)E(y), \alpha s + (1 - \alpha)t)
= (\overline{x}, u).

On the other hand $(E \times I)(\bar{x}, u) = (E(\bar{x}), u)$, therfore $E(\bar{x}) = \bar{x}$.

We shall make use the following three sets :

$$
H_{\text{Sci}} = \{ f : \mathbb{R}^n \to \mathbb{R}, f \text{ is lower semi continuous} \},\tag{1}
$$

$$
H_{L,I} = \{ E : \mathbb{R}^n \to \mathbb{R}^n, E \text{ is linear and idempotent} \}
$$
 (2)

and for each $E \in H_{L,I}$ we define H_E as follows :

$$
H_E = \{ f \in H_{\text{Sci}}, \ f(E(x)) \le f(x) \text{ for all } x \in \mathbb{R}^n \}
$$
 (3)

ICMA2021-2

Proc. of the 1st Int. Conference on Mathematics and Applications, Nov 15-16 2021, Blida

Theorem 4 *Let* $E \in H_{L,I}$ *, and* $f \in H_E$ *. Suppose that there exists an* $\alpha \in]0,1[$ *such that for all* $x, y \in \mathbb{R}^n$, $s, t \in \mathbb{R}$ such that $f(x) < s$, $f(y) < t$,

$$
f(\alpha E(x) + (1 - \alpha)E(y)) < \alpha s + (1 - \alpha)t.
$$

Then f is semi-E-convex.

Proof. By Proposition [\(1\)](#page-1-0), it is sufficient to show that $epi(f)$ is $E \times I$ -convex as a subset of $\mathbb{R}^n \times \mathbb{R}$. By contradiction, suppose that there exist $(x_1, \alpha_1), (x_2, \alpha_2) \in epi(f)$ (with $x_1, x_2 \in \mathbb{R}^n$ and $\alpha_1, \alpha_2 \in \mathbb{R}$) and $\alpha_0 \in]0,1[$ such that,

 $(\alpha_0 E(x_1) + (1-\alpha_0)E(x_2), \alpha_0\alpha_1 + (1-\alpha_0)\alpha_2) \notin epi(f).$

Let $x_0 = \alpha_0 E(x_1) + (1 - \alpha_0) E(x_2)$ and $\lambda_0 = \alpha_0 \alpha_1 + (1 - \alpha_0) \alpha_2$, then $(x_0, \lambda_0) \notin epi(f)$. Using the fact that $f \in H_E$, we see that $(E(x_1), \alpha_1), (E(x_2), \alpha_2) \in epi(f)$. Let

$$
A = epi(f) \cap [(E(x_1), \alpha_1), (x_0, \lambda_0)]
$$

and

$$
B=epi(f)\cap [(x_0,\lambda_0),(E(x_2),\alpha_2)].
$$

Since $f \in H_{\text{Sci}}$, by Proposition [\(2\)](#page-1-1), $epi(f)$ is a closed subset of $\mathbb{R}^n \times \mathbb{R}$. Consequently, *A* and *B* are bounded and closed subsets of $\mathbb{R}^n \times \mathbb{R}$.

Also we have $(x_0, \lambda_0) \notin A$ and $(x_0, \lambda_0) \notin B$. Thus there exist $Z_A = (x_3, \alpha_3) \in A$ and $Z_B =$ $(x_4, \alpha_4) \in B$ such that,

$$
\min_{Z \in A} \|Z - (x_0, \lambda_0)\| = \|Z_A - (x_0, \lambda_0)\|
$$

and

$$
\min_{Z \in B} \|Z - (x_0, \lambda_0)\| = \|Z_B - (x_0, \lambda_0)\|.
$$

Hence, we have

$$
]Z_A, Z_B[\cap epi(f) = \emptyset. \tag{4}
$$

On the other hand, since $Z_A \in epi(f)$ and $Z_B \in epi(f)$, we get $f(x_3) < \alpha_3 + \varepsilon$, $f(x_4) < \alpha_4 + \varepsilon$ for each $\varepsilon > 0$. Since $\alpha (\alpha_3 + \varepsilon) + (1 - \alpha) (\alpha_4 + \varepsilon) = \alpha \alpha_3 + (1 - \alpha) \alpha_4 + \varepsilon$. By the hypothesis of the theorem,

we obtian

$$
f(\alpha E(x_3)+(1-\alpha)E(x_4))<\alpha\alpha_3+(1-\alpha)\alpha_4+\varepsilon.
$$

Since ε is an arbitrary positive real number, it follows that

$$
f(\alpha E(x_3) + (1 - \alpha)E(x_4)) \leq \alpha \alpha_3 + (1 - \alpha)\alpha_4. \tag{5}
$$

Since $Z_A \in A \subset [(E(x_1), \alpha_1), (E(x_2), \alpha_2)]$ and $Z_B \in B \subset [(E(x_1), \alpha_1), (E(x_2), \alpha_2)]$. By Lemma [\(3\)](#page-1-2) we have $E(x_3) = x_3$ and $E(x_4) = x_4$. Using [\(5\)](#page-2-0) we get

$$
(\alpha x_3 + (1 - \alpha)x_4, \alpha \alpha_3 + (1 - \alpha)) \alpha_4) \in epi(f).
$$

Therfore

$$
\alpha Z_A + (1 - \alpha) Z_B \in epi(f)
$$

which contradicts [\(4\)](#page-2-1). Thus, we conclude that $epi(f)$ is $E \times I$ -convex.

Theorem 5 Let $E: \mathbb{R}^n \to \mathbb{R}^n$ be a linear and idempotent map, $f: \mathbb{R}^n \to \mathbb{R}$ be lower semi*continuous and* $f(E(x)) \leq f(x)$ *for all* $x \in \mathbb{R}^n$. Then f is semi-E-convex if and only if there *exists an* $\alpha \in]0,1[$ *such that for all* $x, y \in \mathbb{R}^n$

$$
f(\alpha E(x) + (1 - \alpha)E(y)) \leq \alpha f(x) + (1 - \alpha)f(y).
$$

ICMA2021-3

Proof. Follows from Theorem [\(4\)](#page-1-3) with $s = f(x) + \varepsilon$ and $t = f(y) + \varepsilon$ for each $\varepsilon > 0$, then taking $\varepsilon \to 0$.

Corollary 6 Let $E: \mathbb{R}^n \to \mathbb{R}^n$ be a linear and idempotent map, $f: \mathbb{R}^n \to \mathbb{R}$ be lower semi*continuous and* $f(E(x)) \leq f(x)$ *for all* $x \in \mathbb{R}^n$. Then *f* is semi-E-convex if and only if for all $x, y \in \mathbb{R}^n$

$$
f\left(\frac{1}{2}\left(E(x)+E(y)\right)\right)\leq \frac{1}{2}\left[f(x)+f(y)\right].
$$

Theorem 7 Let $E: \mathbb{R}^n \to \mathbb{R}^n$ be a linear and idempotent map, $f: \mathbb{R}^n \to \mathbb{R}$ be lower semi*continuous and* $f(E(x)) \leq f(x)$ *for all* $x \in \mathbb{R}^n$. Then *f* is semi-E-convex if and only if for all $f(x, y \in \mathbb{R}^n$, there exists an $\alpha \in]0,1[$ *(* α *depends on x,y) such that*

$$
f(\alpha E(x) + (1 - \alpha)E(y)) \leq \alpha f(x) + (1 - \alpha)f(y).
$$
 (6)

If we take $E = Id_{\mathbb{R}^n}$, we get $E \in H_{L,I}$, and $H_E = H_{Sci}$. Then we find results about convex functions.

Theorem 8 Let $f : \mathbb{R}^n \to \mathbb{R}$ be lower semi-continuous. Then f is convex if and only if there exists $a_n \alpha \in]0,1[$ *such that, for all* $x, y \in \mathbb{R}^n$ *,*

$$
f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y).
$$

Theorem 9 Let $f : \mathbb{R}^n \to \mathbb{R}$ be lower semi-continuous. Then f is convex if and only if for all $f(x, y \in \mathbb{R}^n$, there exists an $\alpha \in]0,1[$ *(* α *depends on x,y) such that*

$$
f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y).
$$

Corollary 10 Let $f : \mathbb{R}^n \to \mathbb{R}$ be lower semi-continuous. Then f is convex if and only if for all $x, y \in \mathbb{R}^n$

$$
f\left(\frac{1}{2}\left(x+y\right)\right) \leq \frac{1}{2}\left[f\left(x\right) + f\left(y\right)\right].
$$

4. REFERENCES

- [1] X. Chen, Some properties of semi-E-convex functions, Journal of mathematical Anaysis andApplication, 275, 251-262, (2002).
- [2] E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, Journal of Optimization Theory and Applications, 102, 439-450, (1999).
- [3] G. Dal maso, An Introduction to Γ-convergence,10-11. BirKhauser, Boston, (1993).
- [4] A. A. Megahed, H. G. Gomma, E. A. Youness, A. H. Banna, Optimality conditions of *E*convex programing for an *E*-differentiable function, journal of Inequalities and Applications, 246, 1-11, (2013).
- [5] M. A. Noor, M. U. Awan, K. I. Noor, On some inequalities for relative semi-convex functions, journal of Inequalities and Applications, 332, 1-16,(2013).