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ABSTRACT

In this work, we propose a new modified technique known as fractional Aboodh projected dif-
ferential transform method (FAPDTM) to solve fractional order nonlinear wave-like equations
with variable coefficients. The fractional derivative is described in the sense of Caputo. This me-
thod is the combination of two powerful methods : the Aboodh transform method and projected
differential transform method. We obtain the solutions in the form of series which is rapidly
converges to the exact solution. Three numerical examples are presented to illustrate the validity
and applicability of our proposed technique.

1. INTRODUCTION

Recently, nonlinear fractional partial differential equations (NFPDEs) were tackled by many
researchers because they play an important role in describing many phenomena arising in phy-
sics, chemistry, biology, aerodynamics, control theory, finance, and social sciences [2, 8, 13, 14].

The exact solutions of the NFPDEs can help us to know the described process. So, in the past
decades, mathematicians have made many efforts in the study of exact solutions of NFPDEs.
But, for most these equations, no exact solution is known and, in some cases, it is not even clear
whether a unique solution exists. So, approximation methods, such as numerical and analytical
methods, have been developed.

Several numerical and analytical methods have been proposed for the solutions of NFPDEs
such as : Adomian decomposition method (ADM) [15], homotopy analysis method (HAM) [17],
homotopy perturbation method (HPM) [6], generalized differential transform method (GDTM)
[3], fractional variational iteration method (FVIM) [16], fractional residual power series method
(FRPSM) [9], generalized Taylor fractional series method (GTFSM) [10].

The main objective of this work, is to determine a new approximate analytical solution of
fractional order nonlinear wave-like equations with variable coefficients of the form

Dα
t u =

n

∑
i, j=1

F1i j(X , t,u)
∂ k+m

∂xk
i ∂xm

j
F2i j(uxi ,ux j )

+
n

∑
i=1

G1i(X , t,u)
∂ p

∂xp
i

G2i(uxi)+H(X , t,u)+S(X , t), (1)

subject to the initial conditions

u(X ,0) = a0(X), ut(X ,0) = a1(X), (2)
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where Dα
t is the Caputo fractional derivative operator of order α with 1 < α ≤ 2.

Here, u = {u(X , t),X = (x1,x2, ...,xn) ∈ Rn, t ≥ 0} is an unknown function, F1i j,G1i i, j ∈
{1,2, ...,n} are nonlinear functions of X , t and u, F2i j,G2i i, j ∈ {1,2, ...,n} , are nonlinear func-
tions of derivatives of u with respect to xi and x j i, j ∈ {1,2, ...,n}, respectively. Also H,S are
nonlinear functions and k,m, p are integers.

These types of equations are of considerable significance in various fields of applied sciences,
mathematical physics, nonlinear hydrodynamics, engineering physics, biophysics, human move-
ment sciences, astrophysics and plasma physics. These equations describe the evolution of erratic
motions of small particles that are immersed in fluids, fluctuations of the intensity of laser light,
velocity distributions of fluid particles in turbulent flows.

The outline of the paper is as follows. In Section 2, we present some fundamental definitions
of the fractional calculus and the Aboodh transform. In Section 3, we introduce our results of the
fractional Aboodh projected differential transformation method (FAPDTM) for fractional order
nonlinear wave-like equations with variable coefficients (1) with the initial conditions (2). In
Section 4, we propose three numerical examples in order to show the validity and effectiveness
of this method. Moreover, we present our obtained results (Graphs and Tables) comparing them
with exact solutions. These results were verified using MATLAB Software. Finally, in Section 5,
we give a conclusion of this work.

2. DEFINITIONS AND PRELIMINARIES

In this section, we give some definitions and important properties of the fractional calculus
theory and the Aboodh transform which shall be used in this paper.

Definition 1 [12] A real function f (t), t > 0, is considered to be in the space Cµ , µ ∈ R if there
exists a real number p > µ , so that f (t) = t ph(t), where h(t) ∈C ([0,∞[), and it is said to be in
the space Cn

µ if f (n) ∈ Cµ , n ∈ N.

Definition 2 [12] The Riemann-Liouville fractional integral operator Iα of order α ≥ 0 for a
function f ∈ Cµ ,µ ≥−1 is defined as follows

Iα f (t) =
1

Γ(α)

t∫
0

(t−ξ )α−1 f (ξ )dξ , t > 0. (3)

Definition 3 [12] The Caputo fractional derivative operator of order n−1 < α ≤ n for a func-
tion f ∈ Cn

−1 is de ned as follows

Dα f (t) =
1

Γ(n−α)

t∫
0

(t−ξ )n−α−1 f (n)(ξ )dξ . (4)

Definition 4 [12] The Mittag-Leffler function is defined as follows

Eα (z) =
∞

∑
n=0

zn

Γ(nα +1)
,α ∈ C,Re(α)> 0. (5)

A further generalization of (5) is given in the form

Eα,β (z) =
∞

∑
n=0

zn

Γ(nα +β )
,α,β ∈ C,Re(α)> 0,Re(β )> 0. (6)

For α = 1, Eα (z) reduces to ez.
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Definition 5 [1] The Aboodh transform is defined over the set of functions

A =
{

f (t) | ∃M,k1,k2 > 0, | f (t)|< Mek j |t|, if t ∈ (−1) j× [0,∞)
}
,

by the following integral

A [ f (t)] = K(v) =
1
v

∫
∞

0
f (t)e−vtdt, t ≥ 0,k1 < v < k2, (7)

where v is the factor of the variable t.

Some basic properties of the Aboodh transform are given as follows :
Property 1 : The Aboodh transform is a linear operator. That is, if λ and µ are non-zero

constants, then
A [λ f (t)±µg(t)] = λA [ f (t)]±µA [g(t)] .

Property 2 : If f (n)(t) is the n−th derivative of the function u(t) ∈ A with respect to ”t” then
its Aboodh transform is given by

A
[

f (n)(t)
]
= vnK(v)−

n−1

∑
k=0

vn−2−k f (k)(0).

Property 3 : Some special Aboodh transforms

A (1) =
1
v2 ,

A (t) =
1
v3 ,

A

[
tn

n!

]
=

1
vn+2 ,n = 0,1,2, ...

A

[
tα

Γ(α +1)

]
=

1
vα+2 ,α ≥ 0.

Theorem 1 [11] Let n ∈ N∗ and α > 0 be such that n− 1 < α ≤ n and K(v) be the Aboodh
transform of the function f (t), then the Aboodh transform of the Caputo fractional derivative of
f (t) of order α , is given by

A [Dα f (t)] = vα K(v)−
n−1

∑
k=0

vα−2−k f (k)(0). (8)

3. FAPDTM FOR FRACTIONAL ORDER NONLINEAR WAVE-LIKE EQUATIONS
WITH VARIABLE COEFFICIENTS

Theorem 2 Consider the following fractional order nonlinear wave-like equations with variable
coefficient(1) subject to the initial conditions (2). Then, by FAPDTM the approximate analytical
solution of Eqs. (1) and (2) is given in the form of infinite series as follows

u(X , t) =
∞

∑
k=0

U(X ,k),

where U(X ,k) is the projected differential transformed function.
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Proof. In order to to achieve our goal, we consider the following fractional order nonlinear wave-
like equations with variable coefficients (1) subject to the initial conditions (2).

Applying the Aboodh transform on both sides of (1) subject to initial conditions (2) and
using the theorem 1, we get

A [u(X , t)] =
1

vα

n−1

∑
k=0

vα−2−ku(k)(X ,0)+
1

vα
A [S(X , t)]

+
1

vα
A

[
n

∑
i, j=1

F1i j(X , t,u)
∂ k+m

∂xk
i ∂xm

j
F2i j(uxi ,ux j )

+
n

∑
i=1

G1i(X , t,u)
∂ p

∂xp
i

G2i(uxi)+H(X , t,u)

]
. (9)

Taking the inverse Aboodh transform on both sides of (9), we have

u(X , t) = L(X , t)+A −1

(
1

vα
A

[
n

∑
i, j=1

F1i j(X , t,u)
∂ k+m

∂xk
i ∂xm

j
F2i j(uxi ,ux j )

+
n

∑
i=1

G1i(X , t,u)
∂ p

∂xp
i

G2i(uxi)+H(X , t,u)

])
, (10)

where L(X , t) is a term arising from the source term and the prescribed initial conditions.
Now, we apply the projected differential transform method [7] to Eq. (10), we get

U(X ,0) = L(X , t),

U(X ,k+1) = A −1
(

1
vα

A [A(X ,k)+B(X ,k)+C(X ,k)]
)
,k ≥ 0, (11)

where A(X ,k),B(X ,k) and C(X ,k) are transformed form of the nonlinear terms,
n

∑
i, j=1

F1i j(X , t,u)
∂ k+m

∂xk
i ∂xm

j
F2i j(uxi ,ux j ),

n

∑
i=1

G1i(X , t,u)
∂ p

∂xp
i

G2i(uxi) and H(X , t,v), rerspectively.

From Eq. (11) we have

U(X ,0) = L(X , t),

U(X ,1) = A −1
(

1
vα

A [A(X ,0)+B(X ,0)+C(X ,0)]
)
,

U(X ,2) = A −1
(

1
vα

A [A(X ,1)+B(X ,1)+C(X ,1)]
)
,

U(X ,3) = A −1
(

1
vα

A [A(X ,2)+B(X ,2)+C(X ,2)]
)
,

...

and so on.
Then, the approximate analytical of Eqs. (1) and (2) is given as follows

u(X , t) =
∞

∑
k=0

U(X ,k).

The proof is complete.
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Remark 1 The n−term approximate solution of Eqs. (1) and (2) is given by

u(X , t) =
n−1

∑
k=0

U(X ,k) =U(X ,0)+U(X ,1)+U(X ,2)+ ...+U(X ,n−1). (12)

4. NUMERICAL EXAMPLES

In this section, we apply the FAPDTM on three examples of nonlinear wave-like equations
with Caputo time-fractional derivative and then compare our approximate solutions with the
exact solutions.

Example 1 Consider the following two dimensional fractional order nonlinear wave-like equa-
tions with variable coefficients

Dα
t u =

∂ 2

∂x∂y
(uxxuyy)−

∂ 2

∂x∂y
(xyuxuy)−u,1 < α ≤ 2, (13)

subject to the initial conditions

u(x,y,0) = exy, ut(x,y,0) = exy, (14)

where u =
{

u(x,y, t),(x,y, t) ∈ R2×R+
}

.
By applying the steps involved in FAPDTM as presented in Section 3 to Eqs. (13) and (14),

we have the following iteration formula

U(x,y,0) = exy + texy,

U(x,y,k+1) = A −1
(

1
vα

A

[
∂ 2

∂x∂y
A(x,y,k)− ∂ 2

∂x∂y
B(x,y,k)−U(x,y,k)

])
, (15)

where A(x,y,k) and B(x,y,k) are transformed form of the nonlinear terms, uxxuyy and xyuxuy.
For the convenience of the reader, the first few nonlinear terms are as follows

A(0) = Uxx(0)Uyy(0),
A(1) = Uxx(0)Uyy(1)+Uxx(1)Uyy(0),
A(2) = Uxx(0)Uyy(2)+Uxx(1)Uyy(1)+Uxx(2)Uyy(0),

B(0) = xyUx(0)Uy(0),
B(1) = xyUx(0)Uy(1)+ xyUx(1)Uy(0),
B(2) = xyUx(0)Uy(2)+ xyUx(1)Uy(1)+ xyUx(2)Uy(0).

From the relationship in (15), we obtain

U(x,y,0) = (1+ t)exy,

U(x,y,1) = −
(

tα

Γ(α +1)
+

tα+1

Γ(α +2)

)
exy,

U(x,y,2) =

(
t2α

Γ(2α +1)
+

t2α+1

Γ(2α +2)

)
exy,

...

and so on.
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Then, the approximate analytical solution of Eqs. (13) and (14) can be expressed by

u(x,y, t) =

(
1+ t− tα

Γ(α +1)
− tα+1

Γ(α +2)
+

t2α

Γ(2α +1)
+

t2α+1

Γ(2α +2)
− ...

)
exy

=
(
Eα (−tα )+ tEα,2(−tα )

)
exy,

where Eα (−tα ) and Eα,2(−tα ) are the Mittag-Leffler functions, defined by Eqs. (5) and (6).
Taking α = 2, the approximate analytical solution of Eqs. (13) and (14) has the general

pattern form which is coinciding with the following exact solution in terms of infinite series

u(x,y, t) =
(

1+ t− t2

2!
− t3

3!
+

t4

4!
+

t5

5!
− ...

)
exy.

So, the exact solution of Eqs. (13) and (14) in a closed formof elementary function will be

u(x,y, t) = (cos t + sin t)exy.

The above two expressions is exactly same as those given by ADM [4] and HPTM [5].
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FIGURE 1 – The surface graph of the 3−term approximate solutions by FAPDTM and exact
solution for Example 1 when y = 0.5.

t/x,y 0.1 0.3 0.5 0.7
0.1 1.4226×10−9 1.5411×10−9 1.8085×10−9 2.2991×10−9

0.3 1.0648×10−6 1.1535×10−6 1.3536×10−6 1.7208×10−6

0.5 2.3382×10−5 2.5330×10−5 2.9725×10−5 3.7787×10−5

0.7 1.8000×10−4 1.9499×10−4 2.2882×10−4 2.9089×10−4

0.9 8.2963×10−4 8.9872×10−4 1.0547×10−3 1.3407×10−3

TABLE 1 – Comparison of the absolute errors for the 3−term approximate solutions by FAPDTM
and exact solution for Example 1, when α = 2.
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FIGURE 2 – The behavior of the 3−term approximate solutions by FAPDTM and exact solution
for Example 1 when x = y = 0.5.

Example 2 Consider the following one dimensional fractional order nonlinear wave-like equa-
tions with variable coefficients

Dα
t u = u2 ∂ 2

∂x2 (uxuxxuxxx)+u2
x

∂ 2

∂x2 (u
3
xx)−18u5 +u, 1 < α ≤ 2, (16)

subject to the initial conditions

u(x,0) = ex,ut(x,0) = ex, (17)

where u =
{

u(x, t),(x, t) ∈ ]0,1[×R+
}

.
By applying the steps involved in FAPDTM as presented in Section 3 to Eqs. (16) and (17),

we have the following iteration formula

U(x,0) = (1+ t)ex,

U(x,k+1) = A −1
(

1
vα

A [A(x,k)+B(x,k)−18C(x,k)+U(x,k)]
)
, (18)

where A(x,k),B(x,k) and C(x,k) are transformed form of the nonlinear terms, u2 ∂ 2

∂x2 (uxuxxuxxx),

u2
x

∂ 2

∂x2 (u
3
xx), and u5, rerspectively.

For the convenience of the reader, the first few nonlinear terms are as follows

A(0) = U2(0)
∂ 2

∂x2 [Ux(0)Uxx(0)Uxxx(0)] ,

A(1) = 2U(0)U(1)
∂ 2

∂x2 [Ux(0)Uxx(0)Uxxx(0)]+U2(0)
∂ 2

∂x2 [Ux(1)Uxx(0)Uxxx(0)

+Ux(0)Uxx(1)Uxxx(0)+Ux(0)Uxx(0)Uxxx(1)] ,
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B(0) = U2
x (0)

∂ 2

∂x2 U3
xx(0),

B(1) = 2Ux(0)Ux(1)
∂ 2

∂x2 U3
xx(0)+3U2

x (0)
∂ 2

∂x2

[
U2

xx(0)Uxx(1)
]
,

C(0) = U5(0),

C(1) = 5U4(0)U(1).

From the relationship in (18), we obtain

V (x,0) = (1+ t)ex,

V (x,1) =

(
tα

Γ(α +1)
+

tα+1

Γ(α +2)

)
ex,

V (x,2) =

(
t2α

Γ(2α +1)
+

t2α+1

Γ(2α +2)

)
ex,

...

and so on
Then, the approximate analytical solution of Eqs. (16) and (17) can be expressed by

u(x, t) =

(
1+ t +

tα

Γ(α +1)
+

tα+1

Γ(α +2)
+

t2α

Γ(2α +1)
+

t2α+1

Γ(2α +2)
+ ...

)
ex

=
(
Eα (tα )+ tEα,2(tα )

)
ex,

where Eα (tα ) and Eα,2(tα ) are the Mittag-Leffler functions, defined by Eqs. (5) and (6).
Taking α = 2, the approximate analytical solution of Eqs. (16) and (17) has the general

pattern form which is coinciding with the following exact solution in terms of infinite series

u(x, t) =
(

1+ t +
t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ ...

)
ex.

So, the exact solution of Eqs. (16) and (17) in a closed form of elementary function will be

u(x, t) = ex+t .

The above two expressions is exactly same as those given by ADM [4] and HPTM [5].

t/x 0.1 0.3 0.5 0.7
0.1 1.5572×10−9 1.9019×10−9 2.3230×10−9 2.8373×10−9

0.3 1.1688×10−6 1.4276×10−6 1.7436×10−6 2.1297×10−6

0.5 2.5810×10−5 3.1525×10−5 3.8504×10−5 4.7029×10−5

0.7 2.0036×10−4 2.4472×10−4 2.9890×10−4 3.6507×10−4

0.9 9.3372×10−4 1.1404×10−3 1.3929×10−3 1.7013×10−3

TABLE 2 – Comparison of the absolute errors for the 3−term approximate solutions by FAPDTM
and exact solution for Example 2, when α = 2.
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FIGURE 3 – The surface graph of the 3−term approximate solutions by FAPDTM and exact
solution for Example 2.
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FIGURE 4 – The behavior of the 3−term approximate solutions by FAPDTM and exact solution
for Example 2 when x = 0.5.

Example 3 Consider the following one dimensional fractional order nonlinear wave-like equa-
tions with variable coefficients

Dα
t u = x2 ∂

∂x
(uxuxx)− x2(u2

xx)−u,1 < α ≤ 2, (19)

subject to the initial conditions

u(x,0) = 0,ut(x,0) = x2, (20)
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where u =
{

u(x, t),(x, t) ∈ ]0,1[×R+
}

.
By applying the steps involved in FAPDTM as presented in Section 3 to Eqs. (19) and (20),

we have the following iteration formula

U(x,0) = tx2,

U(x,k+1) = A −1
(

1
vα

A

[
x2 ∂

∂x
A(x,k)− x2B(x,k)−U(x,k)

])
, (21)

where A(x,k) and B(x,k) are transformed form of the nonlinear terms, uxuxx and u2
xx .

For the convenience of the reader, the first few nonlinear terms are asfollows

A(0) = Ux(0)Uxx(0),
A(1) = Ux(0)Uxx(1)+Ux(1)Uxx(0),
A(2) = Ux(0)Uxx(2)+Ux(1)Uxx(1)+Ux(2)Uxx(0),

B(0) = U2
xx(0),

B(1) = 2Uxx(0)Uxx(1),

B(2) = 2Uxx(0)Uxx(2)+U2
xx(1).

From the relationship in (21), we obtain

U(x,0) = tx2,

U(x,1) = − tα+1

Γ(α +2)
x2,

U(x,2) =
t2α+1

Γ(2α +2)
x2,

...

and so on.
Then, the approximate analytical solution of Eqs. (19) and (20) can be expressed by

u(x, t) = x2
(

t− tα+1

Γ(α +2)
+

t2α+1

Γ(2α +2)
− ...

)
= x2 (tEα,2(−tα )

)
,

where Eα,2(−tα ) is the Mittag-Leffler function, defined by Eq. (5).
Taking α = 2, the approximate analytical solution of Eqs. (19) and (20) has the general

pattern form which is coinciding with the following exact solution in terms of infinite series

u(x, t) = x2
(

t− t3

3!
+

t5

5!
− ...

)
.

So, the exact solution of Eqs. (19) and (20) in a closed form of elementary function will be

u(x, t) = x2 sin t.

The above two expressions is exactly same as those given by ADM [4] and HPTM [5].

Remark 2 In this paper, we only apply three terms to approximate the solutions, if we apply
more terms of the approximate solutions, the accuracy of the approximate solutions will be
greatly improved.
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FIGURE 5 – The surface graph of the 3−term approximate solutions by FAPDTM and exact
solution for Example 3.
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FIGURE 6 – The behavior of the 3−term approximate solutions by FAPDTM and exact solution
for Example 3 when x = 0.5.

t/x 0.1 0.3 0.5 0.7
0.1 1.9839×10−13 1.7855×10−12 4.9596×10−12 9.7209×10−12

0.3 4.3339×10−10 3.9005×10−9 1.0835×10−8 2.1236×10−8

0.5 1.5447×10−8 1.3903×10−7 3.8618×10−7 7.5692×10−7

0.7 1.6229×10−7 1.4606×10−6 4.0574×10−6 7.9524×10−6

0.9 9.3840×10−7 8.4456×10−6 2.3460×10−5 4.5982×10−5

TABLE 3 – Comparison of the absolute errors for the 3−term approximate solutions by FAPDTM
and exact solution for Example 3 when α = 2.
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5. CONCLUSIONS

In this work, the fractional Aboodh projected differential transform method (FAPDTM) has
been successfully applied to study the nonlinear wave-like equations with Caputo time-fractional
derivative .The results show that the FAPDTM is an efficient and easy to use technique for finding
approximate analytical solution for this equation. The obtained approximate solution using the
suggested method is in excellent agreement with the exact solution. This confirms our belief that
the efficiency of our technique gives it much wider applicability for general classes of nonlinear
fractional partial differential equations.
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