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Abstract

The purpose of this paper is to establish the invariance principle for the conditional
set-indexed empirical process formed by strong mixing random variables when the co-
variates are functional. We establish our results under some assumptions on the rich-
ness of the index class C of sets in terms of metric entropy with bracketing. We ap-
ply our main result for testing the conditional independence, that is, testing whether
whether two random vectors Y1 and Y2 are independent, given X. The theoretical re-
sults of the present paper are (or will be) key tools for many further developments in
functional data analysis.
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1 Introduction

The theory of empirical processes is one of the major continuing themes in the historical de-
velopment of mathematical statistics and it has many applications ranging from parameter
estimation to hypothesis testing, its history theory dates back to the 1930’s and 1940’s there
has been a great deal research works. The asymptotic properties of empirical processes in-
dexed by functions have been intensively studied during the past decades (see, e.g., van der
Vaart and Wellner (1996) or Dudley (1999) for self-contained, comprehensive books on the
topic with various statistical applications). Vapnik and Červonenkis (1971) characterize,
modulo measurability, the classes C of sets for which the Glivenko-Cantelli theorem holds,
in the independent framework. In this setting many papers were published, we cite among
many others Dudley (1978), Giné and Zinn (1984), Le Cam (1983), Pollard (1982) and Bass

1 E-mail : souddiyoucef@yahoo.fr

2



3

and Pyke (1984). Dudley (1978) studied the empirical process indexed by a class of mea-
surable sets, that is, he considered F = {1A(·) : A ∈ A}, where A is a suitable subset of
the Borel σ-algebra. He obtained several very useful results that go far beyond Donsker’s
theorem, more precisely, he stated different assumptions under which weak convergence to
a Gaussian process holds, including a so-called metric entropy with inclusion. Generalizing
this idea, Ossiander (1987) introduced L2-brackets to approximate the elements of F . These
brackets allow to study larger classes of functions as long as a metric entropy integrability
condition is satisfied, see Ossiander (1987), Theorem 3.1. To deal with random variables
such as time series that are dependent, one naturally asks whether results obtained un-
der the independence assumption remain valid. However, a bracketing condition under
strong mixing was stated by Andrews and Pollard (1994). Doukhan et al. (1995) studied
the function-indexed empirical process for β-mixing sequences. The case of Gaussian long-
range dependent random vectors was already handled by Arcones (1994), Theorem 9. The
assumption on the bracketing number therein is very restrictive and was considerably im-
proved later. In this lines of research in different type of mixing, we may cite Eberlein (1984),
Nobel and Dembo (1993) and Yu (1994). The extension of the above exploration to condi-
tional empirical processes is practically useful and technically more challenging, we may
refer to Stute (1986a), Stute (1986b), Horváth and Yandell (1988) for the case of independent
observations, other authors were interested to the dependent case, for example Yoshihara
(1990) established the asymptotic normality when the sequences are φ-mixing. Polonik and
Yao (2002) have established uniform convergence and asymptotic normality of set-indexed
conditional empirical process in a strictly stationary and strong mixing framework. The
results of Polonik and Yao (2002) were extended by Poryvaı̆ (2005). In the present paper,
we are interested in the limiting behavior of he conditional set-indexed empirical process
when the covariates are functional. Functional data analysis is a field that has been re-
ally popularized with the book by Ramsay and Silverman (2005a) and that received a lot
of attention in the last 20 years with a general aim of adapting existing multivariate ideas
to the functional framework. For good sources of references to research literature in this
area along with statistical applications consult Ramsay and Silverman (2005a), Bosq (2000),
Ramsay and Silverman (2005b), Ferraty and Vieu (2006), Bosq and Blanke (2007), Shi and
Choi (2011), Horváth and Kokoszka (2012), Zhang (2014), Bongiorno et al. (2014), Hsing
and Eubank (2015) and Aneiros et al. (2017). Dimensionality effects have tended to slow
down the development of nonparametric modelling ideas in infinite-dimensional setting.
However, this field has been investigated many years ago by Ferraty and Vieu (2006) and
caused up considerable interest since several hundreds of papers have been published in
the last decade. More precisely, dimensionality problem links with probability theory in
infinite-dimensional space by means of the small ball probability function of the underly-
ing process and with the topological structure on the infinite-dimensional space. More pre-
cisely the interest of using a semi-metric-type topology are discussed in details in the book
of Ferraty and Vieu (2006), we may refer for recent references to Bouzebda and Nemouchi
(2020, 2021); Bouzebda and Nezzal (2021).
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This paper extends asymptotic results for multivariate statistics of set-indexed conditional
empirical process to the context of functional statistical samples. We establish the uniform
convergence and asymptotic normality when the observations assumed are strong mixing
tacking its values in semi-metric space. It should be noted that even for i.i.d. functional
data, no weak convergence has so far been established. To the best of our knowledge, the
results presented here, respond to a problem that has not been studied systematically up to
the present, which was the basic motivation of the paper.
The remainder of this paper is organized as follows. Section 2, we present the notation and
definitions together with the conditional empirical process. Section 2.1, we give our main
results. An application of our main result to the test of the conditional independence is
given in Section 4. Some concluding remarks and possible future developments are rele-
gated to Section 5. To prevent from interrupting the flow of the presentation, all proofs are
gathered in Section ??.

2 The set indexed conditional empirical process

We consider a sample of random elements (X1, Y1), . . . , (Xn, Yn) copies of (X, Y) that takes
its value in a space E ×Rd. The functional space E is equipped with a semi-metric dE (·, ·)2.
We aim to study the links between X and Y, by estimating functional operators associated
to the conditional distribution of Y given X such as the regression operator, for some mea-
surable set C in a class of sets C ,

G(C | x) = E
(
1{Y∈C} | X = x

)
.

This regression relationship suggests to consider the following Nadaraya Watson-type (Nadaraja
(1964) and Watson (1964)) conditional empirical distribution:

Gn(C, x) =

n

∑
i=1

1{Yi∈C}K
(

dE (x, Xi)

hn

)
n

∑
i=1

K
(

dE (x, Xi)

hn

) , (2.1)

where K(·) is a real-valued kernel function from [0, ∞) into [0, ∞) and hn is a smoothing
parameter satisfying hn → 0 as n → ∞, C is a measurable set, and x ∈ E . By choos-
ing C = (−∞, z], z ∈ Rd, it reduces to the conditional empirical distribution function
Fn(z|x) = Gn((−∞, z], x), refer to Stute (1986a), Stute (1986b), Horváth and Yandell (1988).
However, the corresponding class C =

{
(−∞, z], z ∈ Rd}. Concerning the semi-metric

topology defined on E , we will use the notation

B(x, t) = {x1 ∈ E : dE (x1, x) ≤ t},
2A semi-metric (sometimes called pseudo-metric) d(·, ·) is a metric which allows d(x1, x2) = 0 for some

x1 6= x2.
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for the ball in E with center x and radius t. We denote

F(t; x) = P(dE (x, Xi) ≤ t) = P(Xi ∈ B(x, t)) = P(Di ≤ t),

which is usually called in the literature the small ball probability function when t is de-
creasing to zero. One is interested in the behavior of F(u; x) as u → 0. Gasser et al. (1998)
assume that F(h; x) = φ(hn) f1(x) as h → 0 and refer to f1(x) as the probability den-
sity (functional). When H = Rm, then F(h; x) = P [‖x− Xi‖ 6 h] and it can be seen
that in this case φ(hn) = C(m)hm (C(m) is the volume of a unit ball in Rm ) and f1(x) is
the probability density of the random variable X1. Indeed, it can be shown directly that
limh→0 (1/hm) F(h; x) = C(m) f1(x). Motivated by the work of Gasser et al. (1998) and the
above argument we make the assumption (H4)(i)-(ii), refer to this discussion and details to
Masry (2005).

Often statistical observations are not independent but are not far from being indepen-
dent. If not taken into account, dependence can have disastrous effects on statistical infer-
ence. The notion of mixing quantifies how close to independence a sequence of random
variables is, and it can help us to extend classical results for independent sequences to
weakly dependent or mixing sequences, refer to Bradley (2007) for more details. Let us
specify the dependence that we will consider in the present paper.

Definition 1. A sequence {ζk, k ≥ 1} is said to be α-mixing if the αmixing coefficient

α(n)
def
= sup

k≥1
sup

{
|P(A ∩ B)−P(A)P(B)| : A ∈ F ∞

n+k, B ∈ F k
1

}
converges to zero as n → ∞, where F m

l = σ {ζl , ζl+1, . . . , ζm} denotes the σ-algebra generated by
ζl , ζl+1, . . . , ζm with l ≤ m. We use the term geometrically strong mixing if, for some a > 0 and
β > 1,

α(j) ≤ aj−β,

and exponentially strong mixing if, for some b > 0 and 0 < γ < 1,

α(k) ≤ bγk.

Throughout the sequel, we assume tacitly that sequence of random elements {(Xi, Yi), i =
1, . . . , n} is strongly mixing.

2.1 Assumptions and notation

Throughout this paper x is a fixed element of the functional space E . We define metric
entropy with inclusion which provides a measure of richness(or complexity) of class of sets
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C . For each ε > 0, the covering number is defined as :

N (ε, C , G (· | x))

= inf{n ∈N : ∃C1, . . . , Cn ∈ C such that ∀C ∈ C ∃ 1 ≤ i, j ≤ n

with Ci ⊂ C ⊂ Cj and G
(
Cj \ Ci | x

)
< ε},

the quantity log (N (ε, C , G (· | x))) is called metric entropy with inclusion of C with re-
spect to G (· | x). Estimates for such covering numbers are known for many classes; see, e.g.,
Dudley (1984). We will often assume below that either logN (ε, C , G (· | x)) orN (ε, C , G (· | x))
behave like powers of ε−1. We say that the condition (Rγ) holds if

logN (ε, C , G (· | x)) ≤ Hγ(ε), for all ε > 0, (2.2)

where

Hγ(ε) =

{
log(Aε) if γ = 0,
Aε−γ if γ > 0,

for some constants A, r > 0. As in Polonik and Yao (2002), it is worth noticing that the
condition (2.2), γ = 0, holds for intervals, rectangles, balls, ellipsoids, and for classes which
are constructed from the above by performing set operations union, intersection and com-
plement finitely many times. The classes of convex sets in Rd (d ≥ 2) fulfil the condition
(2.2), γ = (d − 1)/2. This and other classes of sets satisfying (2.2) with γ > 0, can be
found in Dudley (1984). In this section, we establish the weak convergence of the process
{ν̃n(C, x) : C ∈ C } defined by

ν̃n(C, x) :=
√

nφ(hn) (Gn(C, x)− IEGn(C, x)) . (2.3)

In our analysis, we will make use of the following assumptions.

(H1) For all t > 0, we have φ(t) > 0. For all t ∈ (0, 1), τ0(t) exists, where

τ0(t) = lim
r→0

φ(rt)
φ(r)

= lim
r→0

P(dE (x, X) ≤ rt | P(dE (x, X) ≤ t)) < ∞;

(H2) There exist β > 0 and η1 > 0, such that for all x1, x2 ∈ Nx, a neighborhood of x, we
have

|G(C | x1)−G(C | x2)| ≤ η1dβ
E (x1, x2);

(i) Let g2(u) = Var
(
1{Yj∈C} | Xj = u

)
for u ∈ E . Assume that g2(u) is independent

of j and is continuous in some neighborhood of x, as h→ 0,

sup
{u:d(x,u)≤h}

|g2(u)− g2(x)| = o(1),

Assume
gν(u) = IE(|1{Yi∈C} −G(C | x)|ν | Xi = u), u ∈ E ,
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is continuous in some neighborhood of x,

(ii) Define, for i 6= j, u, v ∈ E ,

g(u, v; x) = IE((1{Yi∈C} −G(C | x))(1{Yj∈C} −G(C | x)) | Xi = u, Xj = v).

Assume that g(u, v; x) does not depend on i, j and is continuous in some neigh-
borhood of (x, x);

(H3) There exist m ≥ 2 and η2 > 0, such that, we have, almost surely

IE(|Y|m|X) ≤ η2 < ∞;

(H4)

(i) For all i ≥ 1,

0 < c5φ(hn) f1(x) ≤ P(Xi ∈ B(x, h)) = F(h; x) ≤ c6φ(hn) f1(x),

where φ(hn)→ 0 as h→ 0 and f1(x) is a nonnegative functional in x ∈ E ,

(ii) We have

sup
i 6=j

P((Xi, Xj) ∈ B(x, h)× B(x, h)) = sup
i 6=j

P(Di ≤ h, Dj ≤ h) ≤ ψ(h) f2(x),

where ψ(h) as h → 0 and f2(x) is a nonnegative functional in x ∈ E . We assume that
the ratio ψ(h)/φ2(h) is bounded;

(H5) For all (y1, y2) ∈ IR2d and constants b3 > 0, η4 > 0, we have for the conditional density
f (·) of Y given X = x the following

| f (y1)− f (y2) |≤ η4‖ y1 − y2‖b3 ;

(i) F(u; x) = φ(u) f1(x) as u → 0, where φ(0) = 0 and φ(u) is absolutely continuous in a
neighborhood of the origin,

(ii) We have
sup
i 6=j

P
(

Di ≤ u, Dj ≤ u
)
≤ ψ(u) f2(x),

as u→ 0, where ψ(u)→ 0 as u→ 0. We assume that the ratio ψ(h)/φ2(h) is bounded;

(H6) The kernel function K(·) is supported within (0, 1/2) and has a continuous first deriva-
tive on (0, 1/2). Moreover, there exist constants 0 < η5 ≤ η6 < ∞ such that:

0 < η51(0,1/2)(·) ≤ K(·) ≤ η61(0,1/2)(·),
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and

K(1/2)−
∫ 1/2

0
K
′
(s)τ0(s)ds > 0, K2(1/2)−

∫ 1/2

0
(K2)

′
(s)τ0(s)ds > 0;

(H7) Assume the class of sets C satisfies the condition (2.2);

(H8) (Mixing): for some v > 2 and δ > 1− 2
v , we have

∞

∑
`=1

`δ[α(`)]1−
2
v < ∞;

(H9) The smoothing parameter (hn) satisfies:

log n
n min(an, φ(hn))

−→ 0,

(i) Let hn → 0 and nφ(hn) → ∞ as n → ∞. Let υn be a sequence of positive integers
satisfying υn → ∞ such that υn = o((nφ(hn))1/2) and

(n/φ(hn))
1/2α(υn)→ 0 as n→ ∞.

2.2 Comments on the assumptions

The Condition (H1) is related to the small ball probabilities, which plays a major role both
from theoretical and practical points of view, because the notion of ball is strongly linked
with the semi-metric d(·, ·), the choice of this semi-metric will become an important stage
when the data are tacking its values in some infinite dimensional space. The second part of
(H1) will be used to control the bias of nonparametric estimators, one needs to have some
information on the variability of the small-ball probability. Indeed, in many examples, the
small ball probability function can be written approximately as the product of two inde-
pendent functions in terms of x and h, as in the following examples, which can be found in
Proposition 1 of Ferraty et al. (2007):

1. φ(hn) = Chυ
n for some υ > 0 with τ0(s) = sυ;

2. φ(hn) = Chυ
n exp(−Ch−p

n ) for some υ > 0 and p > 0 with τ0(s) is the Dirac’s
function;

3. φ(hn) = C |ln(hn)|−1 with τ0(s) =]0,1] (s) the indicator function in ]0, 1].

The conditions (H2)-(H3) are classical in the nonparametric regression estimation. (H4) is
similar to those in Masry (2005). (H5): About the conditions on the density f (·) is classi-
cal Lipschitz-type nonparametric functional model. The conditions on the kernel are not
very restrictive. The first part of condition (H6) appears in many kernel functional stud-
ies and is easily satisfied for wide classes of kernel functions, the interested reader can
refer to H4 in Ferraty et al. (2007). The second part of this condition, which is added in
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this paper as a necessary tool to get uniform results, is linked to the function τ0(·) and is
also rather general. For example, when τ0(·) is identified to be the Dirac mass at 1/2, the
second part of τ0(·) is true as long as K′(s) ≤ 0 and K(1/2) > 0. Other examples can
be derived from Proposition 2 in Ferraty et al. (2007). Condition (H8) rules out too large
or too small bandwidths for which consistency could not be obtained. It is satisfied with
hn = O(log n)−ν1 (for some suitable ν1 > 0) as long as the process X is of the exponential
type (that is when the small-ball probability function is exponentially decaying). It is also
satisfied with hn = O(n/ log n)−ν2 (for some suitable ν2 > 0) for fractal processes (that is,
when the small-ball probability is of polynomial decaying). More details can be found in
Ferraty and Vieu (2006).

3 Main results

Below, we write Z D
= N (µ, σ2) whenever the random variable Z follows a normal law

with expectation µ and variance σ2, D→ denotes the convergence in distribution and P→ the
convergence in probability.

Theorem 1. [Uniform Consistency] Suppose that the hypotheses (H1)-(H8) hold and that (Xt, Yt)

is geometrically strong mixing with β > 2. Let C be a class of measurable sets for which

N (ε, C , G (· | x)) < ∞

for any ε > 0. Suppose further that ∀C ∈ C

|G(C, y) f (y)−G(C, x) f (x)| −→ 0, as y→ x.

If nφ(hn)→ ∞ and hn → 0 as n→ ∞, then

sup
C∈C

|Gn(C, x)− IE (Gn(C, x))| P−→ 0.

The proof of this theorem is based on the following relations. Remark that, the proof of
Theorem 1 is a direct consequence of the decomposition:

Gn(C, x)− IE (Gn(C, x)) =
1

IE( f̂n(x))

[
F̂n(C, x)− IE

(
F̂n(C, x)

)]
−Gn(C, x)

IE( f̂n(x))

[
f̂n(x)− IE( f̂n(x))

]
,

where

F̂n(C, x) =
1

nφ(hn)

n

∑
i=1

1{Yi∈C}K
(

dE (x, Xi)

hn

)
,

f̂n(x) =
1

nφ(hn)

n

∑
i=1

K
(

dE (x, Xi)

hn

)
,
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and of the Lemmas 1 and 2 below, for which the proofs are given in the Appendix.

Lemma 1. Suppose that the hypotheses (H1)-(H8) hold and for every fixed C ∈ C as n → ∞ we
have :

sup
C∈C

∣∣∣F̂n(C, x)− IE
(

F̂n(C, x)
)∣∣∣ = oP(1)

Lemma 2. Suppose that the hypotheses (H1)-(H8) hold and for every fixed NE neighborhood of x in
the functional space E as n→ ∞, we have

sup
x∈NE

∣∣∣ f̂n(x)− IE
(

f̂n(x)
)∣∣∣ = oP(1).

Before to establishing the asymptotic normality define the “bias” term by

Bn(x) =
IE
(

f̂n(x)
)
−Gn(C, x)IE

(
F̂n(C, x)

)
IE
(

F̂n(C, x)
) .

By stationarity of order one of the (Xi)’s, we have

IE( f̂n(x)) = 1.

The following result give the weak convergence of our estimators. Keep in mind that f1(x)
is given in (H5).

Theorem 2 (Asymptotic normality). Let (H2)-(H5)(i)(ii)-(H6)-(H8)-(H9)(i) hold and (Xi, Yj)

is geometrically strong mixing with β > 2, then nφ(hn) → ∞ as n → ∞. For m ≥ 1 and
C1, . . . , Cm ∈ C ,

{ν̃n(Ci, x)i=1,...,m}
D−→ N (0, Σ),

where Σ = σij(x), i, j = 1, . . . , m and

σij(x) =
C2

C2
1 f1(x)

(
E(1{Y∈Ci∩Cj} | X = x)−E(1{Y∈Ci} | X = x)E(1{Y∈Cj} | X = x)

)
,

whenever f1(x) > 0 and

C1 = K(1/2)−
∫ 1/2

0
K
′
(s)τ0(s)ds, C2 = K2(1/2)−

∫ 1/2

0
(K2)

′
(s)τ0(s)ds.

To establish the density of the process, we need to introduce the following function which
provides the information on the asymptotic behaviour of the modulus of continuity

Λγ(σ
2, n) =


√

σ2 log
1
σ2 , if γ = 0;

max
(
(σ2)(1−γ)/2, nφ(hn)

(3γ−1)/(2(3γ+1))
)

, if γ > 0.

Theorem 3. Suppose that (H1)-(H9) hold and the process (Xi, Yi) is exponentially strong mixing
for each σ2 > 0, let Cσ ⊂ C be a class of measurable sets with
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sup
C∈Cσ

G(C, x) ≤ σ2 ≤ 1,

and suppose that C fulfils (Rγ) with γ ≥ 0. Further, we assume that φ(hn) → 0 and nφ(hn) →
+∞ as n→ +∞, such that

nφ(hn) ≤
(
Λγ(σ

2, n)
)2

,

and as n→ +∞, we have

nφ

(
σ2 log

(
1
σ2

))1+γ

log(n)
→ ∞.

Further we assume that σ2 ≥ h2. For γ > 0 and d = 1, 2, the later has to be replaced by σ2 ≥

φ(hn) log
(

1
φ(hn)

)
then for every ε > 0 there exist a constant M > 0 such that

P

(
sup
C∈Cσ

|ν̃n(C, x)| ≥ MΛγ(σ
2, n)

)
≤ ε,

for all sufficiently large n.

By combining Theorem 2 and Theorem 3 we have the following result.

Theorem 4. Under conditions of Theorem 2 and Theorem 3, then the process:

{ν̃n(C, x) : C ∈ C } ,

converges in law to a Gaussian process {ν̃(C, x) : C ∈ C } , that admits a version with uniformly
bounded and uniformly continuous paths with respect to ‖ · ‖2−norm with covariance σij(x) given
in Theorem 2.

Remark 1. Central limit theorems are usually used to establish confidence intervals for the target to
be estimated. In the context of non-parametric estimation the asymptotic variance Σ := σi,j(x) in the
central limit depends on certain functions, including the ones that are estimated. This situation is
classic regardless of whether the data is i.i.d. or dependent. As a result, only approximate confidence
intervals can be obtained in practice, even when Σ functionally specified. To be more precise let us
consider the following particular case of Theorem 2, where m = 1. In the this situation, Σ is reduced
to, for A ∈ C ,

σ2(x) =
C2

C2
1 f1(x)

(
E(1{Y∈A} | X = x)−E(1{Y∈A} | X = x)2) = C2

C2
1 f1(x)

W2(x).

Observe that the limiting variance contains the unknown function f1(·) and that the normalization
depends on the function φ(hn) which is not identifiable explicitly. Let us introduce the following
estimate

Fx,n(t) =
1
n

n

∑
i=1

1{d(x,Xi)≤t},
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One may estimate τ0(·) by

τn(t) =
Fx,n(th)
Fx,n(h)

.

This can use to give the following estimates

C1,n = K(1/2)−
∫ 1/2

0
K
′
(s)τn(s)ds, C2, n = K2(1/2)−

∫ 1/2

0
(K2)

′
(s)τn(s)ds.

One can estimate W2,n(x) by

W2,n(x) = (Gn(C, x)−G2
n(C, x)),

The use of Theorem 2, in connection with Slutsky’s theorem, gives

C1,n√
C2,n

√
nFx,n(hn)

W2,n(x)
(Gn(C, x)−G(C, x)) D−→ N (0, 1).

This result can be used in the construction of the confident interval in the usual way, we omit the
details.

3.1 The bandwidth selection criterion

Many methods have been established and developed to construct, in asymptotically op-
timal ways, bandwidth selection rules for nonparametric kernel estimators especially for
Nadaraya-Watson regression estimator we quote among them Hall (1984), Härdle and Mar-
ron (1985), Rachdi and Vieu (2007), Bouzebda and El-hadjali (2020) and Bouzebda and
Nemouchi (2020). This parameter has to be selected suitably, either in the standard finite
dimensional case, or in the infinite dimensional framework for insuring good practical per-
formances. Let us define the leave-out-(Xi, Yi) estimator for regression function

Gn,j(C, x) =

n

∑
i=1,i 6=j

1{Yi∈C}K
(

dE (x, Xi)

hn

)
n

∑
i=1

K
(

dE (x, Xi)

hn

) . (3.1)

In order to minimize the quadratic loss function, we introduce the following criterion, we
have for some (known) non-negative weight functionW(·) :

CV (C, h) :=
1
n

n

∑
j=1

(
1{Yj∈C} −Gn,j(C, Xj)

)2
W
(
Xj
)

. (3.2)

Following the ideas developed by Rachdi and Vieu (2007), a natural way for choosing the
bandwidth is to minimize the precedent criterion, so let’s choose ĥn ∈ [an, bn] minimizing
among h ∈ [an, bn]:

sup
C∈C

CV (Ψ, h) .
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The main interest of our results is the possibility to derive the asymptotic properties of our
estimate even if the bandwidth parameter is a random variable, like in the last equation.
One can replace (3.2) by

CV (C, hn) :=
1
n

n

∑
j=1

(
1{Yj∈C} −Gn,j(C, Xj)

)2
Ŵ
(
Xj, x

)
. (3.3)

In practice, one takes, for j = 1, . . . , n, the uniform global weightsW
(
Xj
)
= 1, and the local

weights

Ŵ(Xj, x) =

{
1 if d(Xj, x) ≤ hn,
0 otherwise.

For sake of brevity, we have just considered the most popular method, that is, the cross-
validated selected bandwidth. This may be extended to any other bandwidth selector such
the bandwidth based on Bayesian ideas Shang (2014).

4 Testing the independence

Concepts of conditional independence play an important role in unifying many seemingly
unrelated ideas of statistical inference, see Dawid (1980). Measuring and testing conditional
dependence are fundamental problems in statistics, which form the basis of limit theorems,
Markov chain, sufficiency and causality Dawid (1979), among others. Conditional indepen-
dence also plays a central role in graphical modeling Koller and Friedman (2009), causal
inference Pearl (2009) and artificial intelligence Zhang et al. (2011), refer also to Zhou et al.
(2020) for recent references. The idea of treating conditional independence as an abstract
concept with its own calculus was introduced by Dawid (1979), who showed that many re-
sults and theorems concerning statistical concepts such as ancillarity, sufficiency, causality,
etc., are just applications of general properties of conditional independence-extended to en-
compass stochastic and non-stochastic variables together. Let C1, C2 be some classes of stets.
In this section, we consider a sample of random elements (X1, Y1,1, Y1,2), . . . , (Xn, Yn,1, Yn,2)

copies of (X, Y1, Y2) that takes its value in a space E ×Rd1 ×Rd2 and define, for (C1, C2) ∈
C1 × C2,

Gn(C1 × C2, x) =

n

∑
i=1

1{Yi,1∈C1}1{Yi,2∈C2}K
(

dE (x, Xi)

hn

)
n

∑
i=1

K
(

dE (x, Xi)

hn

) , (4.1)

Gn,1(C1, x) =

n

∑
i=1

1{Yi,1∈C1}K
(

dE (x, Xi)

hn

)
n

∑
i=1

K
(

dE (x, Xi)

hn

) , (4.2)
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Gn,2(C2, x) =

n

∑
i=1

1{Yi,2∈C2}K
(

dE (x, Xi)

hn

)
n

∑
i=1

K
(

dE (x, Xi)

hn

) . (4.3)

We will investigate the following processes, for (C1, C2) ∈ C1 × C2,

ν̂n(C1, C2, x) =
√

nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x))) , (4.4)

ν̆n(C1, C2, x) =
√

nφ(hn) (Gn(C1 × C2, x)−Gn,1(C1, x)Gn,2(C2, x)) . (4.5)

Notice that we have

ν̆n(C1, C2, x) =
√

nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x)))

+
√

nφ(hn)IE(Gn(C2, x)) (Gn(C1, x)− IE(Gn(C1, x)))

−
√

nφ(hn)(Gn(C1, x)) (Gn(C2, x)− IE(Gn(C2, x))) .

Hence we have

ν̆n(C1, C2, x) d
=

√
nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x)))

+
√

nφ(hn)IE(Gn(C2, x)) (Gn(C1, x)− IE(Gn(C1, x)))

−
√

nφ(hn)IE(Gn(C1, x)) (Gn(C2, x)− IE(Gn(C2, x)))

= ν̂n(C1, C2, x) + IE(Gn(C2, x))ν̃n(C1, x)− IE(Gn(C1, x))ν̃n(C2, x). (4.6)

One can show that, for (A1, B1), (A2, B2) ∈ C1 × C2,

cov(ν̂n(A1, B1, x), ν̂n(A2, B2, x))

=
C2

C2
1 f1(x)

(
E(1{Y∈A1∩A2} | X = x)−E(1{Y∈A1} | X = x)E(1{Y∈A2} | X = x)

)
×
(
E(1{Y∈B1∩B2} | X = x)−E(1{Y∈B1} | X = x)E(1{Y∈B2} | X = x)

)
, (4.7)

whenever f1(x) > 0. The decomposition in (4.6) give an idea on the process ν̆n(C1, C2, x)
and its structure, however the calculation of the associated covariance more involved. Let
{ν̂(C1, C2, x) : (C1, C2) ∈ C1 × C2} be a Gaussian process with covariance given in (4.7). Let
us introduce the following limiting process, for (C1, C2) ∈ C1 × C2,

ν̆(C1, C2, x) = ν̂(C1, C2, x) + G(C2, x)ν̃(C1, x)−G(C1, x)ν̃(C2, x).

We would test the following null hypothesis

H0 : Y1 and Y2 are conditionally independent given X = x.
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Against the alternative

H1 : Y1 and Y2 are conditionally dependent.

Statistics of independence those can be used are

S1,n = sup
(C1,C2)∈C1×C2

|ν̂n(C1, C2, x)|, (4.8)

S2,n = sup
(C1,C2)∈C1×C2

|ν̆n(C1, C2, x)|. (4.9)

A combination of Theorem 4 with continuous mapping theorem we obtain the following
result.

Theorem 5. We have under condition of Theorem 4, as n→ ∞,

S1,n → sup
(C1,C2)∈C1×C2

|ν̂(C1, C2, x)|, (4.10)

S2,n → sup
(C1,C2)∈C1×C2

|ν̆(C1, C2, x)|. (4.11)

Remark 2. It is well known that Theorem 5 can be used easily through routine bootstrap sampling
as in Bouzebda (2012), Bouzebda and Cherfi (2012) and Bouzebda et al. (2018), which we describe
briefly as follows. Let N be a large integer. Let S(1)

j,n , . . . , S(N)
j,n be the bootstrapped versions of Sj,n,

for j = 1, 2. With the convention that large values of Sj,n, j = 1, 2, lead to the rejection of the null
hypothesis H0, under some regularity conditions, a valid approximation to the P-value for the test
based on Sj,n, j = 1, 2, for N large enough, is given by

1
N

N

∑
k=1

1I{S(k)
j,n ≥ Sj,n}.

The investigation of the bootstrap should require a different methodology than that used in the present
paper, and we leave this problem open for future research.

5 Concluding remarks

In the present work, we have established the invariance principle for the conditional set-
indexed empirical process formed by strong mixing random variables when the covariates
are functional. Our results are obtained under assumptions on the richness of the index
class C of sets in terms of metric entropy with bracketing in the framework of mixing data.
An application of testing the conditional independence is proposed. Notice that mixing is
some kind of asymptotic independence assumption which is commonly used for seek of
simplicity but which can be unrealistic in situations where there is strong dependence be-
tween the data. Extending non-parametric functional ideas to general dependence structure
is a rather underdeveloped field. Note that the ergodic framework avoid the widely used
strong mixing condition and its variants to measure the dependency and the very involved
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probabilistic calculations that it implies. It would be interesting to extend our work to the
case of the functional ergodic data, which requires non trivial mathematics, this would go
well beyond the scope of the present paper.
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